基于连续观测数据的毛乌素沙地生长季土壤水分动态及其对降雨的响应
收稿日期: 2023-06-12
修回日期: 2023-12-13
网络出版日期: 2024-05-17
基金资助
科技兴蒙行动重点专项(KJXM-EEDS-2020006)
Dynamic change of soil moisture and its response to rainfall during the growing season in Mu Us Sandy Land based on continuous observation data
Received date: 2023-06-12
Revised date: 2023-12-13
Online published: 2024-05-17
水分是制约半干旱区沙地植物生长发育和生态建设的关键非生物因子。于2008—2010年和2018—2021年生长季(4—10月)对毛乌素沙地流动、半固定和固定沙地0~100 cm深土壤水分进行了连续观测,系统分析了不同固定程度沙地土壤水分动态变化规律及其对降雨的响应。结果表明:(1) 受降雨季节变化的影响,流动、半固定和固定沙地不同深度土壤水分季节变化一般呈∽型或双峰型,10 cm和30 cm深土壤水分含量波动较大,60 cm和100 cm深土壤水分含量波动较小。(2) 3种固定程度沙地生长季土壤水分动态差异明显,总体来看,流动沙地土壤水分状况最好,且土壤水分含量变化相对平缓,固定沙地土壤水分状况最差,且土壤水分含量变化最为剧烈,半固定沙地居于二者之间;固定沙地10~30 cm深土壤水分状况好于半固定沙地和流动沙地,30~100 cm深土壤水分状况则相反。(3) 降雨格局是形成土壤水分时空格局的主要原因,随降雨事件降雨量增加,降雨的入渗深度逐渐增加;但是固定沙地土壤水分的深层补充需较强的降雨和较长的时间。生长季降雨事件以小降雨事件为主,表层土壤水分波动更剧烈。生长季初期降雨较少且以小降雨事件为主,10 cm以下土壤水分补充困难,土壤水分状况较差。流动沙地和半固定沙地10~30 cm深土壤水分状况好于30~100 cm深土壤,而固定沙地土壤水分状况则相反。研究结果可为半干旱区沙化土地近自然植被恢复与固沙植被稳定性维持提供科学依据。
成龙 , 吴波 , 贾晓红 , 殷婕 , 费兵强 , 张令光 , 岳艳鹏 , 孙迎涛 , 李佳 . 基于连续观测数据的毛乌素沙地生长季土壤水分动态及其对降雨的响应[J]. 干旱区地理, 2024 , 47(4) : 648 -661 . DOI: 10.12118/j.issn.1000-6060.2023.276
Soil moisture is a crucial abiotic factor that limits the growth and development of plants and the ecological construction of sandy areas in semi-arid regions. In this study, continuous observations were performed on soil moisture at depths of 0-100 cm in shifting, semifixed, and fixed sandy land in the Mu Us Sandy Land during the growing seasons from 2008 to 2010 and from 2018 to 2021 (April to October). The dynamic changes in soil moisture and its response to rainfall were systematically analyzed. The results are as follows: (1) Affected by seasonal changes in rainfall, the seasonal variation of soil moisture in shifting, semifixed, and fixed sandy land exhibited a generally “∽”-shaped or double-peaked pattern. The soil moisture in the 10- and 30-cm depth ranges exhibited greater fluctuations, whereas that in the 60- and 100-cm depth ranges showed smaller fluctuations. (2) The dynamic differences in soil moisture during the growing season were significant among the three degrees of fixation. Overall, the shifting sandy land had the best soil moisture status with smooth changes, whereas the fixed sandy land had the worst soil moisture status with the most drastic changes. The semifixed sandy land fell between the two. The soil moisture in the 10-30 cm depth range of the fixed sandy land was better than that of the semifixed and shifting sandy lands, whereas the situation was opposite at depths of 30-100 cm. (3) The pattern of rainfall was the main factor determining the spatiotemporal distribution of soil moisture. As rainfall events occur and the amount of rain increases, the depth of rainwater infiltration gradually increases. However, deep replenishment of soil moisture in fixed sandy land requires higher rainfall amounts and longer periods. During the growing season, small rainfall events were dominant, resulting in greater fluctuations in soil moisture in the surface layers. At the beginning of the growing season, soil moisture below 10 cm was not replenished because of low rainfall and small rainfall events, resulting in poor soil moisture conditions. The shifting and semifixed sandy lands had better soil moisture at depths of 10-30 cm than at depths of 30-100 cm, whereas the opposite was true for the fixed sandy land. These results provide a scientific basis for the restoration of near-natural vegetation and the stable maintenance of sand-fixing vegetation on sandy decertified land in semi-arid regions.
[1] | Shen Q, Gao G Y, Fu B J, et al. Soil water content variations and hydrological relations of the cropland-treebelt-desert land use pattern in an oasis-desert ecotone of the Heihe River Basin, China[J]. Catena, 2014(123): 52-61. |
[2] | Liu X P, He Y H, Zhang T H, et al. The response of infiltration depth, evaporation, and soil water replenishment to rainfall in mobile dunes in the Horqin Sandy Land, northern China[J]. Environmental Earth Sciences, 2015, 73(12): 8699-8708. |
[3] | 张存厚, 段晓凤, 杨丽萍, 等. 草甸草原降水特征与土壤水分对降水脉动响应——以呼伦贝尔草原额尔古纳市为例[J]. 干旱区地理, 2022, 45(6): 1881-1889. |
[Zhang Houcun, Duan Xiaofeng, Yang Liping, et al. Characteristics of precipitation and response of soil moisture to precipitation pulse in meadow steppe: A case of Ergun City in Hulunbuir steppe[J]. Arid Land Geography, 2022, 45(6): 1881-1889. ] | |
[4] | Gao X, Wu P, Zhao X, et al. Soil moisture variability along transects over a well-developed gully in the Loess Plateau, China[J]. Catena, 2011, 87(3): 357-367. |
[5] | Yu X, Huang Y, Li E, et al. Effects of vegetation types on soil water dynamics during vegetation restoration in the Mu Us Sandy Land, northwestern China[J]. Journal of Arid Land, 2017, 9(2): 188-199. |
[6] | 廉泓林, 李卫, 冯金超, 等. 科尔沁沙地典型固沙人工林地土壤水分时空特征及其对环境因子的响应[J]. 生态学报. 2021, 41(20): 8256-8265. |
[Lian Honglin, Li Wei, Feng Jinchao, et al. Spatiotemporal characteristics of soil moisture and its responses to environmental factors in two typical sand-fixing plantations at the south edge of Horqin Sandy Land[J]. Acta Ecologica Sinica, 2021, 41(20): 8256-8265. ] | |
[7] | 梁香寒. 毛乌素沙地不同固定程度油蒿群落水分变化过程及影响因素研究[D]. 北京: 北京林业大学, 2021. |
[Liang Xianghan. Soil moisture dynamics and its mechanism of Artemisia ordosica community in Mu Us Sandy Land[D]. Beijing: Beijing Forestry University, 2021. ] | |
[8] | 姚淑霞. 科尔沁沙地土壤水分时空动态及其模拟研究[D]. 北京: 中国科学院大学, 2012. |
[Yao Shuxia. Temporal and spatial dynamic of soil moisture and its simulation in Korqin Sand Land[D]. Beijing: University of Chinese Academy of Sciences, 2012. ] | |
[9] | 郑博文, 胡顺军, 周智彬, 等. 古尔班通古特沙漠南缘风沙土土壤水分特征与毛管水最大上升高度[J]. 干旱区地理. 2020, 43(4): 1059-1066. |
[Zheng Bowen, Hu Shunjun, Zhou Zhibin, et al. Maximum height of capillary rising water and characteristic of soil moisture in the southern edge of Gurbantunggut Desert[J]. Arid Land Geography, 2020, 43(4): 1059-1066. ] | |
[10] | 姚雪玲, 杨国靖, 王帅, 等. 黄土丘陵沟壑区不同深度土壤水分对降雨的响应及其稳定性[J]. 干旱区地理. 2021, 44(2): 507-513. |
[Yao Xueling, Yang Guojing, Wang Shuai, et al. Soil moisture response and stability to rainfall in different depths in Loess Plateau[J]. Arid Land Geography, 2021, 44(2): 507-513. ] | |
[11] | 孙姗姗, 刘新平, 王翠萍, 等. 半干旱沙地樟子松林降雨再分配特征[J]. 干旱区地理, 2021, 44(1): 109-117. |
[Sun Shanshan, Liu Xinping, Wang Cuiping, et al. Precipitation redistribution characteristics of Pinus sylvestris var. mongolica in semiarid sandy land[J]. Arid Land Geography, 2021, 44(1): 109-117. ] | |
[12] | 张军红. 毛乌素沙地油蒿群落土壤水分分布与动态[D]. 北京: 中国林业科学研究院, 2013. |
[Zhang Junhong. Distribution and dynamic of soil moisture in Artemisia ordosica community in Mu Us Sandy Land[D]. Beijing: Chinese Academy of Forestry, 2013. ] | |
[13] | Yu X, Huang Y, Li E, et al. Effects of rainfall and vegetation to soil water input and output processes in the Mu Us Sandy Land, northwest China[J]. Catena, 2018, 161: 96-103. |
[14] | 董学军, 陈仲新, 阿拉腾宝, 等. 毛乌素沙地沙地柏(Sabina vulgaris)的水分生态初步研究[J]. 植物生态学报, 1999, 23(4): 311-319. |
[Dong Xuejun, Chen Zhongxin, A Latengbao, et al. A preliminary study on the water regimes of Sabina vulgaris in Maowusu Sandland, China[J]. Chinese Journal Plant Ecology, 1999, 23(4): 311-319. ] | |
[15] | 岳艳鹏, 孙迎涛, 庞营军, 等. 毛乌素沙地沙丘活化过程中油蒿(Artemisia ordosica)根系特征[J]. 中国沙漠, 2020, 40(3): 177-184. |
[Yue Yanpeng, Sun Yingtao, Pang Yingjun, et al. Root characteristics of Artemisia ordosica in the process of sand dunes activation in Mu Us Sandland[J]. Journal of Desert Research, 2020, 40(3): 177-184. ] | |
[16] | Dong Guangrong, Gao Shangyu, Jin Jiong, et al. The formation, evolution and cause of the Mu Us Desert in China[J]. Scientia in China (Series B), 1989, 32(7): 859-872. |
[17] | Wu B, Han H Y, He J, et al. Field-specific calibration and evaluation of ECH2O EC-5 sensor for sandy soils[J]. Soil Science Society of America Journal, 2014, 78(1): 70-78. |
[18] | Wang X P, Zhang Y F, Hu R, et al. Revisit of event-based rainfall characteristics at Shapotou area in northern China[J]. Sciences in Cold and Arid Regions, 2016, 8(6): 477-484. |
[19] | 信乃诠, 王立祥. 中国北方旱区农业[M]. 北京: 中国农业出版社, 2001: 89-125. |
[Xin Naiquan, Wang Lixiang. The study on dryland agriculture in north China[M]. Beijing: Chinese Agriculture Press, 2001: 89-125. ] | |
[20] | 周文君. 油蒿叶水分利用效率动态特征及其对环境因子的响应[D]. 北京: 北京林业大学, 2020. |
[Zhou Wenjun. Dynamics of leaf water use efficiency in Artemisia ordosica in response to environment factors[D]. Beijing: Beijing Forestry University, 2020. ] | |
[21] | Balugani E, Lubczynski M W, Tol C V D, et al. Testing three approaches to estimate soil evaporation through a dry soil layer in a semi-arid area[J]. Journal of Hydrology, 2018, 567: 405-419. |
[22] | Reynolds R, Belnap J, Reheis P, et al. Aeolian dust in Colorado Plateau soils: Nutrient inputs and recent change in source[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001(98): 7123-7127. |
[23] | Li S, Bowker M A, Xiao B. Biocrusts enhance non-rainfall water deposition and alter its distribution in dryland soils-ScienceDirect[J]. Journal of Hydrology, 2021, 595(4): 126050, doi: 10.1016/j.jhydrol.2021.126050. |
[24] | 贾晓红, 李新荣, 张景光, 等. 沙冬青灌丛地的土壤颗粒大小分形维数空间变异性分析[J]. 生态学报. 2006, 26(9): 2827-2833. |
[Jia Xiaohong, Li Xinrong, Zhang Jingguang, et al. Spatial heterogeneity analysis of fractal dimension of soil particle for Ammopiptanhus mongolicus shrub[J]. Acta Ecologica Sinica, 2006, 26(9): 2827-2833. ] | |
[25] | Cheng L, Yue Y, Zhou H, et al. Biological soil crusts enhance the role of non-rainfall water in the water input in alpine sandy land ecosystems[J]. Journal of Hydrology, 2022, 610: 127966, doi: 10.1016/j.jhydrol.2022.127966. |
[26] | 张志山, 王新平, 李新荣, 等. 沙漠人工植被区土壤蒸发测定[J]. 中国沙漠. 2005, 25(2): 243-248. |
[Zhang Zhishan, Wang Xinping, Li Xinrong, et al. Soil evaporation in artificially re-vegetated desert area[J]. Journal of Desert Research, 2005, 25(2): 243-248. ] | |
[27] | Mu J W, Zha T S, Jia X, et al. Influence of typical sandy shrubs on soil evaporation in Mu Us Sandland, northwestern China[J]. Journal of Beijing Forestry University, 2016, 38(12): 39-45. |
[28] | 周宏伟, 李生宇, 孙树国, 等. 自然覆盖物对塔里木沙漠公路防护林土壤蒸发的影响[J]. 科学通报, 2008(增刊2): 123-130. |
[Zhou Hongwei, Li Shengyu, Sun Shuguo, et al. The effect of natural cover on soil evaporation in the protective forest of the Tarim Desert highway[J]. Chinese Science Bulletin, 2008(Suppl. 2): 123-130. ] | |
[29] | 贾天宇, 刘廷玺, 段利民, 等. 半干旱沙丘草甸过渡带人工杨树蒸腾耗水规律[J]. 生态学杂志, 2020, 39(10): 3255-3264. |
[Jia Tianyu, Liu Tingxi, Duan Limin, et al. Transpiration and water consumption of poplar trees in semi-arid dune meadow transition zone[J]. Chinese Journal of Ecology, 2020, 39(10): 3255-3264. ] | |
[30] | Yao S X, Zhao C, Zhang T H, et al. Response of the soil water content of mobile dunes to precipitation patterns in Inner Mongolia, northern China-ScienceDirect[J]. Journal of Arid Environments, 2013, 97(12): 92-98. |
[31] | Wang S, Fu B J, Gao G Y, et al. Responses of soil moisture in different land cover types to rainfall events in a re-vegetation catchment area of the Loess Plateau, China[J]. Catena, 2013, 101(3): 122-128. |
[32] | 孙琰蕙, 张定海, 张志山. 腾格里沙漠不同类型沙丘土壤水分含量与地形-植被因子关系研究[J]. 干旱区地理, 2022, 45(5): 1570-1578. |
[Sun Yanhui, Zhang Dinghai, Zhang Zhishan. Relationship between soil moisture content and topography-vegetation factors in different types of dunes in the Tengger Desert[J]. Arid Land Geography, 2022, 45(5): 1570-1578. ] | |
[33] | 姚淑霞, 张铜会, 赵传成, 等. 科尔沁地区不同类型沙地土壤水分的时空异质性[J]. 水土保持学报, 2012, 26(1): 251-254, 258. |
[Yao Shuxia, Zhang Tonghui, Zhao Chuancheng, et al. Spatio-temporal variability of soil moisture in different dunes of Horqin Sandy Land[J]. Journal of Soil and Water Conservation, 2012, 26(1): 251-254, 258. ] | |
[34] | 乔闪闪, 吴磊, 彭梦玲. 人工模拟降雨条件下黄土坡面水-沙-氮磷流失特征[J]. 环境科学研究, 2018, 31(10): 1728-1735. |
[Qiao Shanshan, Wu Lei, Peng Mengling. Simulation of runoff, sediment, nitrogen and phosphorus loss on bare loess sloping land using simulated rainfall[J]. Research of Environmental Sciences, 2018, 31(10): 1728-1735. ] | |
[35] | Ao C, Yang P L, Zeng W Z, et al. Impact of raindrop diameter and polyacrylamide application on runoff, soil and nitrogen loss via raindrop splashing-ScienceDirect[J]. Geoderma, 2019, 353: 372-381. |
[36] | Yu J, Lei T, Shainberg I, et al. Infiltration and erosion in soils treated with dry PAM and gypsum[J]. Soil Science Society of America Journal, 2003, 67(2): 630-636. |
[37] | 魏雅芬, 郭柯, 陈吉泉. 降雨格局对库布齐沙漠土壤水分的补充效应[J]. 植物生态学报, 2008, 32(6): 1346-1355. |
[Wei Yafen, Guo Ke, Chen Jiquan. Effect of precipitation pattern on recruitment of soil water in Kubuqi Desert, northwestern China[J]. Chinese Journal of Plant Ecology, 2008, 32(6): 1346-1355. ] |
/
〈 |
|
〉 |