气候变化与地表过程

新疆阿克苏温宿大峡谷丹霞地貌特征及成因分析

  • 张菩 ,
  • 陈留勤 ,
  • 邵崇建 ,
  • 李文 ,
  • 杜丁丁
展开
  • 东华理工大学地球科学学院,江西 南昌 330013
张菩(1999-),女,硕士研究生,主要从事丹霞地貌成因研究. E-mail: 2021110104@ecut.edu.cn
陈留勤(1983-),男,博士,教授,主要从事红层沉积环境及丹霞地貌成因研究. E-mail: chenliuqin@ecut.edu.cn

收稿日期: 2023-04-13

  修回日期: 2023-06-19

  网络出版日期: 2024-05-17

基金资助

国家自然科学基金项目(42361002);国家自然科学基金项目(41772197);江西省社科基金“十四五”(2021年)地区项目(21DQ45)

Features and causes of Danxia landscape in the Wensu Grand Canyon of Aksu, Xinjiang, China

  • ZHANG Pu ,
  • CHEN Liuqin ,
  • SHAO Chongjian ,
  • LI Wen ,
  • DU Dingding
Expand
  • School of Earth Sciences, East China University of Technology, Nanchang 330013, Jiangxi, China

Received date: 2023-04-13

  Revised date: 2023-06-19

  Online published: 2024-05-17

摘要

由于造景岩石普遍为钙质和铁质胶结的砂岩和砾岩,丹霞地貌具有独特的景观特征和成因机制,同时因具有较高的科学和观赏价值而成为备受关注的旅游资源。东南湿润区丹霞地貌的研究程度较高,但是对西北干旱气候区丹霞地貌的研究还比较少见。以新疆阿克苏温宿大峡谷为研究对象,通过野外调查、样品显微镜观察、盐化学和元素地球化学实验以及ArcGIS面积高程积分(Hypsometric integral,HI)方法,探讨该地区丹霞地貌的特征和成因。结果显示:(1) 研究区呈现峡谷、山峰及峰林景观,以发育陡崖泥流林和顶盖型石柱为特色,其造景岩石主要为新近纪河流相红色砾岩和砂岩,硬度较高的砾岩层为形成顶盖型石柱提供了有利保障。(2) 红层位于温宿盐丘附近,岩石含盐量较高,主要的盐类型为氯化物、硫酸盐和硝酸盐。陡崖洞穴风化碎屑物样品中的大部分主量元素相对于表岩迁出,说明干旱气候下化学风化仍较活跃。(3) 面积高程积分显示研究区南部HI值为0.61,处于幼年期,而北部HI值为0.38,处于老年期,整体地貌演化发育阶段差别较大。研究区虽然降水量较低,但河流侵蚀作用明显,同时构造也是影响丹霞地貌演化的主要因素。

本文引用格式

张菩 , 陈留勤 , 邵崇建 , 李文 , 杜丁丁 . 新疆阿克苏温宿大峡谷丹霞地貌特征及成因分析[J]. 干旱区地理, 2024 , 47(4) : 576 -587 . DOI: 10.12118/j.issn.1000-6060.2023.170

Abstract

The bedrock of the Danxia landscape is predominantly cemented by calcareous and ferruginous cements; thus, it has special landscape elements and formation mechanisms. It has become an important tourism resource with much attention because of its high scientific and ornamental values. However, compared with southeast humid areas, little attention has been paid to the characteristics and causes of the Danxia landscape in the arid climate of Northwest China. The Wensu Grand Canyon in the Aksu Prefecture of Xinjiang was selected and investigated to explore the characteristics and causes of the Danxia landscape by field investigation, sample microscope observations, salt chemistry and element geochemistry experiments, and ArcGIS hypsometry. The results are as follows: (1) The study area is characterized by canyon, peak and peak forest landscapes, well-developed mud flow films along slopes, and cap rock columns. The bedrock comprises red fluvial conglomerates and sandstones of Neogene age. The hard conglomerate beds are favorable for the formation of cap rock columns. (2) The study area is located near the Wensu salt dome with a high salt content, and the main salt minerals are probably chlorides, nitrates and sulfates, as inferred from the salt experiment. Most of the major elements of sandy debris samples within caverns migrated compared with the surface rock, indicating active chemical weathering in the arid climate. (3) The hypsometric integral (HI) shows that the HI value of the southern part of the study area is 0.61, which suggests an early stage. The HI value of the northern part is 0.38, which indicates a late stage. Therefore, the geomorphic evolution and development stages differ in the study area. Although the precipitation in the study area is very low, river erosion is obvious. Tectonism is also considered the main controlling factor of Danxia landscape evolution.

参考文献

[1] Migoń P. Sandstone geomorphology: Recent advances[J]. Geomorphology, 2021, 373: 107484, doi: 10.1016/j.geomorph.2020.107484.
[2] Migoń P. Geomorphology of conglomerate terrains: Global overview[J]. Earth-Science Reviews, 2020, 208: 103302, doi: 10.1016/j.earscirev.2020.103302.
[3] Yan L B, Peng H, Zhang S Y, et al. The spatial patterns of red beds and Danxia landforms: Implication for the formation factors-China[J]. Scientific Reports, 2019, 9: 1961, doi: 10.1038/s41598-018-37238-7.
[4] 欧阳杰, 朱诚, 彭华, 等. 湖南崀山丹霞地貌岩体抗酸侵蚀脆弱性的实验研究[J]. 地球科学进展, 2011, 26(9): 965-970.
  [Ouyang Jie, Zhu Cheng, Peng Hua, et al. Experimental research on vulnerability of Danxia rocks to resistance against acid erosion in Langshan, Hunan Province[J]. Advances in Earth Science, 2011, 26(9): 965-970. ]
[5] 彭华, 邱卓炜, 潘志新. 丹霞山顺层洞穴风化特征的试验研究[J]. 地理科学, 2014, 34(4): 454-463.
  [Peng Hua, Qiu Zhuowei, Pan Zhixin. Experimental study on the weathering features of bedding caves at Mt. Danxiashan[J]. Scientia Geographica Sinica, 2014, 34(4): 454-463. ]
[6] Zhu C, Wu L, Zhu T X, et al. Experimental studies on the Danxia landscape morphogenesis in Mt. Danxiashan, south China[J]. Journal of Geographical Sciences, 2015, 25(8): 943-966.
[7] 刘东兴, 陈欣, 陈留勤, 等. 江西宁都翠微峰蜂窝状洞穴特征及成因[J]. 山地学报, 2022, 40(2): 196-204.
  [Liu Dongxing, Chen Xin, Chen Liuqin, et al. Genesis of tafoni in the Cuiwei Peak, Jiangxi Province, China[J]. Mountain Research, 2022, 40(2): 196-204. ]
[8] 史月欣, 陈留勤, 杜丁丁, 等. 丹霞山陡坡上风化洞穴的基本特征及成因探讨[J]. 热带地理, 2023, 43(1): 103-114.
  [Shi Yuexin, Chen Liuqin, Du Dingding, et al. Basic characteristics and genesis of cavernous weathering features on the steep slopes of Danxia landscape in Danxiashan UNESCO Global Geopark[J]. Tropical Geography, 2023, 43(1): 103-114. ]
[9] 齐德利, 陈致均, 王随继, 等. 崆峒山丹霞地貌地层归属演化及地貌年龄[J]. 山地学报, 2015, 33(4): 408-415.
  [Qi Deli, Chen Zhijun, Wang Suiji, et al. Stratigraphic classification, evolution stage and geomorphologic age of Kongtongshan Danxia landform in Pingliang, Gansu, China[J]. Mountain Research, 2015, 33(4): 408-415. ]
[10] 李通国, 刘明强, 任文秀, 等. 兰州周边红层地貌地质特征及旅游前景展望[J]. 甘肃地质, 2020, 29(1-2): 85-95.
  [Li Tongguo, Liu Mingqing, Ren Wenxiu, et al. Geological characteristics and tourism prospect of red beds landscape around Lanzhou[J]. Gansu Geology, 2020, 29(1-2): 85-95. ]
[11] 彭小华, 吴昊, 李兴文, 等. 延安地区丹霞地貌类型及发育机制研究[J]. 干旱区地理, 2021, 44(2): 418-426.
  [Peng Xiaohua, Wu Hao, Li Xingwen, et al. Danxia landform types and development mechanism in Yan’an City[J]. Arid Land Geography, 2021, 44(2): 418-426. ]
[12] 潘志新, 任舫, 陈留勤, 等. 陕北丹霞地貌特征及国内外对比研究[J]. 地理科学, 2021, 41(6): 1069-1078.
  [Pan Zhixin, Ren Fang, Chen Liuqin, et al. Characteristics of Danxia landform in the northern Shaanxi and a comparison with other Danxia areas in and outside China[J]. Scientia Geographica Sinica, 2021, 41(6): 1069-1078. ]
[13] Chen L Q, Migoń P, Guo F S, et al. Cavernous weathering in aeolian sandstones: An example from the Yongningshan Hill of the Loess Plateau, northwest China[J]. Acta Geologica Sinica-English Edition, 2022, 96(5): 1764-1777.
[14] 丁华, 段丰浩, 陈姗姗, 等. 陕北甘泉丹霞峡谷群地质遗迹景观特征与保护利用[J]. 地球科学与环境学报, 2023, 45(2): 362-372.
  [Ding Hua, Duan Fenghao, Chen Shanshan, et al. Characteristics, protection and utilization of the canyons of Danxia Landscape Geoheritages in Ganquan area of the northern Shaanxi, China[J]. Journal of Earth Sciences and Environment, 2023, 45(2): 362-372. ]
[15] 杨望暾, 郭威, 张阳, 等. 新疆温宿盐丘国家地质公园地质遗迹资源及综合评价[J]. 干旱区资源与环境, 2013, 27(9): 193-197.
  [Yang Wangtun, Guo Wei, Zhang Yang, et al. Geological relic resources and comprehensive valueation of the Salt Dome National Geopark in Wensu County, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2013, 27(9): 193-197. ]
[16] 马丽芳. 中国地质图集[M]. 北京: 地质出版社, 2002: 342-343.
  [Ma Lifang. Geological atlas of China[M]. Beijing: Geological Publishing House, 2002: 342-343. ]
[17] 郭福生, 陈留勤, 严兆彬, 等. 丹霞地貌定义、分类及丹霞作用研究[J]. 地质学报, 2020, 94(2): 361-374.
  [Guo Fusheng, Chen Liuqin, Yan Zhaobin, et al. Definition, classification, and danxianization of Danxia landscapes[J]. Acta Geologica Sinica, 2020, 94(2): 361-374. ]
[18] 李回贵, 李化敏, 李长兴, 等. 应用扫描电镜-X射线能谱研究神东矿区砂岩中结构面的微观结构及元素特征[J]. 岩矿测试, 2018, 37(1): 70-78.
  [Li Huigui, Li Huamin, Li Changxing, et al. Study on microstructure and elements in the sandstone of the Shendong coal field, Inner Mongolia by SEM-EDX[J]. Rock and Mineral Analysis, 2018, 37(1): 70-78. ]
[19] 周尚文, 薛华庆, 郭伟. 基于扫描电镜和X射线能谱的页岩矿物分析方法[J]. 中国石油勘探, 2017, 22(6): 27-33.
  [Zhou Shangwen, Xue Huaqing, Guo Wei. A mineral analysis method for shale based on SEM and X-ray EDS[J]. China Petroleum Exploration, 2017, 22(6): 27-33. ]
[20] 魏小燕, 叶美芳, 朱津蕊, 等. 应用扫描电镜-能谱分析技术研究松辽盆地营城组致密砂岩中火山灰的微观特征[J]. 电子显微学报, 2022, 41(2): 148-153.
  [Wei Xiaoyan, Ye Meifang, Zhu Jinrui, et al. Microscopic characteristics of volcanic materials in tight sandstone of Yingcheng formation in Songliao Basin by SEM-EDS[J]. Journal of Chinese Electron Microscopy Society, 2022, 41(2): 148-153. ]
[21] 何文寿, 刘阳春, 何进宇. 宁夏不同类型盐渍化土壤水溶盐含量与其电导率的关系[J]. 干旱地区农业研究, 2010, 28(1): 111-116.
  [He Wenshou, Liu Yangchun, He Jinyu. Relationships between soluble salt content and electrical conductivity for different types of salt-affected soils in Ningxia[J]. Agricultural Research in the Arid Areas, 2010, 28(1): 111-116. ]
[22] 冯连君, 储雪蕾, 张启锐, 等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 2003, 10(4): 539-544.
  [Feng Lianjun, Chu Xuelei, Zhang Qirui, et al. CIA (chemical index of alteration) and its applications in the Neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10(4): 539-544. ]
[23] Nesbitt H W. Mobility and fractionation of rare earth elements during weathering of a granodiorite[J]. Nature, 1979, 279(5710): 206-210.
[24] 王为, 周尚哲, 李炳元, 等. 崂山山顶风化坑化学风化过程的岩石化学与矿物学证据[J]. 第四纪研究, 2012, 32(1): 158-166.
  [Wang Wei, Zhou Shangzhe, Li Bingyuan, et al. Petrochemistry and mineralogy evidences for the weathering process of the weathering pits on rock surfaces of Mountain Laoshan, China[J]. Quaternary Sciences, 2012, 32(1): 158-166. ]
[25] Strahler A H. Hypsometric (area-altitude) analysis of erosional topography[J]. Bulletin of the Geological Society of America, 1952, 63(11): 1117-1142.
[26] 邵崇建, 李勇, 赵国华, 等. 基于面积-高程积分对龙门山南段山前河流的构造地貌研究[J]. 现代地质, 2015, 29(4): 727-737.
  [Shao Chongjian, Li Yong, Zhao Guohua, et al. Tectonic geomorphology analysis of piedmont rivers in the southern section of Longmenshan based on Hypsometric Integral[J]. Geoscience, 2015, 29(4): 727-737. ]
[27] 何登发, 孙方原, 何金有, 等. 温宿北—野云沟断裂的构造几何学与运动学特征及塔北隆起的成因机制[J]. 中国地质, 2011, 38(4): 917-934.
  [He Dengfa, Sun Fangyuan, He Jinyou, et al. Geometry and kinematics of Wensubei-Yeyungou fault and its implication for the genetic mechanism of North Tarim uplift[J]. Geology in China, 2011, 38(4): 917-934. ]
[28] 曾联波, 谭成轩, 张明利. 塔里木盆地库车坳陷中新生代构造应力场及其油气运聚效应[J]. 中国科学(D辑:地球科学), 2004(增刊1): 98-106.
  [Zeng Lianbo, Tan Chengxuan, Zhang Mingli. Cenozoic tectonic stress field and its transport and gas effect in Kuqa depression of Tarim Basin[J]. Science In China (Ser. D Earth Sciences), 2004(Suppl. 1): 98-106. ]
[29] 黄日辉, 刘韫, 王为. 广东庙湾岛风化坑的地貌特征及成因[J]. 热带地理, 2016, 36(2): 284-295.
  [Huang Rihui, Liu Yun, Wang Wei. Topography, morphological characteristics and formation of weathering pit in the Miaowan Island, Guangdong, China[J]. Tropical Geography, 2016, 36(2): 284-295. ]
[30] Duzgoren-Aydin N S, Aydin A, Malpas J. Re-assessment of chemical weathering indices: Case study on pyroclastic rocks of Hong Kong[J]. Engineering Geology, 2002, 63(1/2): 99-119.
[31] 陈留勤, 李馨敏, 郭福生, 等. 丹霞山世界地质公园蜂窝状洞穴特征及成因分析[J]. 地质论评, 2018, 64(4): 895-904.
  [Chen Liuqin, Li Xinmin, Guo Fusheng, et al. Characteristics and origin of honeycombs in the Danxiashan Global Geopark in south China[J]. Geological Review, 2018, 64(4): 895-904. ]
[32] Chen X, Chen L Q, Zhang Y H, et al. Lithological and environmental controls on large tafoni along conglomerate cliffs in subtropic humid Danxiashan UNESCO Global Geopark[J]. Journal of Mountain Science, 2021, 18(5): 1131-1143.
[33] Rodriguez-navarro C, Doehne E. Salt weathering: Influence of evaporation rate, supersaturation and crystallization pattern[J]. Earth Surface Processes and Landforms, 1999, 24(3): 191-209.
[34] Guo F S, Chen L Q, Xu H, et al. Origin of beaded tafoni in cliffs of Danxia landscapes, Longhushan Global Geopark, south China[J]. Journal of Mountain Science, 2018, 15(11): 2398-2408.
[35] Angeli M, Hébert R, Menéndez B, et al. Influence of temperature and salt concentration on the salt weathering of a sedimentary stone with sodium sulphate[J]. Geological Society Special Publications, 2010, 333(1): 35-42.
[36] Goudie A S, Viles H A. The nature and pattern of debris liberation by salt weathering: A laboratory study[J]. Earth Surface Processes and Landforms, 1995, 20(5): 437-449.
[37] 王会萍. 新疆温宿峡谷盐底辟构造与油气聚集[J]. 西安科技大学学报, 2011, 31(1): 59-63.
  [Wang Huiping. Ochirbat salt diapiric structure and hydrocarbon accumulation in the canyon of Xinjiang Wensu County[J]. Journal of Xi’an University of Science and Technology, 2011, 31(1): 59-63. ]
[38] 段云江, 罗浩渝, 谢会文, 等. 塔里木盆地库车坳陷秋里塔格构造带中秋—东秋段盐相关构造特征及变形机理[J]. 天然气地球科学, 2021, 32(7): 993-1008.
  [Duan Yunjiang, Luo Haoyu, Xie Huiwen, et al. Salt-related structural characteristics and deformation mechanism of the Zhongqiu-Dongqiu section of the Qiulitag structural belt, Tarim Basin[J]. Natural Gas Geoscience, 2021, 32(7): 993-1008. ]
[39] 吕洪波, 苏德辰, 章雨旭, 等. 中国不同气候带盐风化作用的地貌特征[J]. 地质论评, 2017, 63(4): 911-926.
  [Lü Hongbo, Su Dechen, Zhang Yuxu, et al. Landform features of salt weathering in different climatic zones in China[J]. Geological Review, 2017, 63(4): 911-926. ]
[40] 徐叔鹰. 干旱区盐风化过程的初步研究[J]. 干旱区地理, 1993, 16(2): 14-20.
  [Xu Shuying. Preliminary study on the salt weathering process in arid area[J]. Arid Land Geography, 1993, 16(2): 14-20. ]
文章导航

/