气候变化与地表过程

1970—2020年黄土高原水蚀风蚀交错区极端降水时空变化研究及驱动因素分析

  • 黎珩 ,
  • 朱冰冰 ,
  • 边熇 ,
  • 王蓉 ,
  • 唐馨怡
展开
  • 陕西师范大学地理科学与旅游学院,陕西 西安 710119
黎珩(2000-),女,硕士研究生,主要从事气候与水土保持研究. E-mail: 20212260@snnu.edu.cn
朱冰冰(1980-),女,博士,副教授,主要从事土壤侵蚀与水土保持研究. E-mail: zbb1026@126.com

收稿日期: 2023-04-28

  修回日期: 2023-07-06

  网络出版日期: 2024-05-17

基金资助

陕西省重点研发计划“沙漠-黄土过渡带植被结构特征阈值与提质增效关键技术研究”(007106191063)

Temporal and spatial changes in extreme precipitation and its driving factors in the water-wind erosion crisscross region of the Loess Plateau from 1970 to 2020

  • LI Heng ,
  • ZHU Bingbing ,
  • BIAN He ,
  • WANG Rong ,
  • TANG Xinyi
Expand
  • School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, Shaanxi, China

Received date: 2023-04-28

  Revised date: 2023-07-06

  Online published: 2024-05-17

摘要

黄土高原水蚀风蚀交错区作为中国北方典型的生态脆弱区,因其独特地形和气候条件,极端降雨事件对其环境和生态系统的影响更加突出。选取水蚀风蚀交错区28个气象站点,结合RClimDex模型计算11个极端降水指数,采用线性相关分析法、Mann-Kendall趋势检验法和小波交叉法,分析了1970—2020年黄土高原水蚀风蚀交错区极端降水事件时空分布特征,探讨了极端降水事件的驱动因素。结果表明:(1) 1970—2020年水蚀风蚀交错区持续干燥日数(CDD)呈下降趋势,其余10个指数呈上升趋势,反映出近50 a研究区极端降水事件的频率、量级和强度不断增加。交错区年降水量增加和极端降水事件增加具有密切关系,且极端降水事件增加主要是由中雨日数(R10)和大雨日数(R20)引起。(2) 1970—2020年极端降水事件在全区整体为增加趋势,交错区中部和西南部极端降水事件显著发生,陕西段极端降水量和强度呈显著增加趋势且极端化程度更显著。(3) 湿日总降水量(PRCPTOT)、暴雨日数(R25)、5 d最大降水量(R5d)3个极端降水指数,与影响因子厄尔尼诺-南方涛动(ENSO)、东亚夏季风(EASM)和太阳黑子(SN)具有不同的功率,与SN的交叉小波变换功率最大,说明影响因子中SN和极端降水指数的相关性最高,SN对极端降水事件的影响最大。

本文引用格式

黎珩 , 朱冰冰 , 边熇 , 王蓉 , 唐馨怡 . 1970—2020年黄土高原水蚀风蚀交错区极端降水时空变化研究及驱动因素分析[J]. 干旱区地理, 2024 , 47(4) : 539 -548 . DOI: 10.12118/j.issn.1000-6060.2023.194

Abstract

As a typical ecologically vulnerable area in northern China, the ecologically vulnerable area of the Loess Plateau is significantly affected by extreme rainfall events because of its unique topography and climatic conditions. Twenty-eight meteorological stations in the water-wind erosion crisscross region were selected, and eleven extreme precipitation indices were calculated using the RClimDex model. Linear correlation analysis, the Mann-Kendall trend test, and the wavelet crossing method were used to analyze the spatial-temporal distribution characteristics of extreme precipitation events in the water-wind erosion crisscross region of the Loess Plateau from 1970 to 2020. Driving factors for extreme precipitation events are discussed. The results are as follows: (1) The number of continuous dry days in the water and wind erosion interlacing zone from 1970 to 2020 shows a decreasing trend, whereas the other 10 indices show an increasing trend, reflecting the increasing frequency, magnitude, and intensity of extreme precipitation events in the study area during the past 50 years. There is a close relationship between increases in annual precipitation and extreme precipitation events, and an increase in extreme precipitation events is mainly caused by the number of moderate and heavy rain days. (2) Extreme precipitation events show an increasing trend in the entire region from 1970 to 2020, with significant extreme precipitation events occurring in the central and southwest parts of the crisscross region. The extreme precipitation and intensity in the Shaanxi section show a significant increasing trend, and the extreme degree is very significant. (3) The three extreme precipitation indices, total wet day precipitation, number of heavy rain days, and 5-day maximum precipitation, have varying degrees of influence from El Nino-Southern Oscillation, East Asian Summer Monsoon, and sunspot number (SN), with cross wavelet transform with SN having the greatest influence. This shows that the correlation between SN and extreme precipitation index is the highest among the influencing factors, and SNs have the greatest influence on extreme precipitation events.

参考文献

[1] Legg S. IPCC, 2021: Climate change 2021-the physical science basis[J]. Interaction, 2021, 49(4): 44-45.
[2] Brown P J, Bradley R S, Keimig F T. Changes in extreme climate indices for the northeastern United States, 1870—2005[J]. Journal of Climate, 2010, 23(24): 6555-6572.
[3] New M, Hewitson B, Stephenson D B, et al. Evidence of trends in daily climate extremes over southern and west Africa[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D14): D14102, doi: 10.1029/2005JD006289.
[4] Regoto P, Dereczynski C, Chou S C, et al. Observed changes in air temperature and precipitation extremes over Brazil[J]. International Journal of Climatology, 2021, 41(11): 5125-5142.
[5] 史文茹, 李昕, 曾明剑, 等. “7·20”郑州特大暴雨的多模式对比及高分辨率区域模式预报分析[J]. 大气科学学报, 2021, 44(5): 688-702.
  [Shi Wenru, Li Xin, Zeng Mingjian, et al. Multi-model comparison and high-resolution regional model forecast analysis for the “7·20” Zhengzhou severe heavy rain[J]. Transactions of Atmospheric Sciences, 2021, 44(5): 688-702. ]
[6] Meehl G A, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st century[J]. Science, 2004, 305(5686): 994-997.
[7] Perkins S, Alexander L, Nairn J. Increasing frequency, intensity and duration of observed global heatwaves and warm spells[J]. Geophysical Research Letters, 2012, 39(20): 20714, doi: 10.1029/2012GL053361.
[8] Li G K, Moon S. Topographic stress control on bedrock landslide size[J]. Nature Geoscience, 2021, 14(5): 307-313.
[9] 李双双, 孔锋, 韩鹭, 等. 陕北黄土高原区极端降水时空变化特征及其影响因素[J]. 地理研究, 2020, 39(1): 140-151.
  [Li Shuangshuang, Kong Feng, Han Lu, et al. Spatiotemporal variability of extreme precipitation and influencing factors on the Loess Plateau in northern Shaanxi Province[J]. Geographical Research, 2020, 39(1): 140-151. ]
[10] 陈效逑, 刘立, 尉杨平. 1961—2005年黄河流域极端气候事件变化趋势[J]. 人民黄河, 2011, 33(5): 3-5.
  [Chen Xiaoshu, Liu Li, Yu Yangping, et al. Variation trend of extreme climate events of the Yellow River Basin in 1961—2005 period[J]. Yellow River, 2011, 33(5): 3-5. ]
[11] 杨维涛, 孙建国, 康永泰, 等. 黄土高原地区极端气候指数时空变化[J]. 干旱区地理, 2020, 43(6): 1456-1466.
  [Yang Weitao, Sun Jianguo, Kang Yongtai, et al. Temporal and spatial changes of extreme weather indices in the Loess Plateau[J]. Arid Land Geography, 2020, 43(6): 1456-1466. ]
[12] 孙艳萍. 黄土高原水蚀风蚀交错带植被覆盖动态变化及其与气候因子的关系[D]. 杨凌: 西北农林科技大学, 2012.
  [Sun Yanping. Dynamic changes of vegetation cover and the relationship with climatic factors of the water-wind erosion crisscross region in the Loess Plateau[D]. Yangling: Northwest A & F University, 2012. ]
[13] 卓静, 胡皓, 何慧娟, 等. 陕北黄土高原生态脆弱性时空变异及驱动因素分析[J]. 干旱区地理, 2023, 46(11): 1768-1777.
  [Zhuo Jing, Hu Hao, He Huijuan, et al. Spatiotemporal variation and driving factors of ecological vulnerability in the Loess Plateau of northern Shaanxi[J]. Arid Land Geography, 2023, 46(11): 1768-1777. ]
[14] 殷敏峰, 邸明婷, 邓鑫欣, 等. 黄土高原水蚀风蚀交错带迎风坡水蚀影响的风蚀特征[J]. 中国水土保持科学, 2022, 20(5): 39-46.
  [Yin Minfeng, Di Mingting, Deng Xinxin, et al. Wind erosion characteristics on windward slopes affected by water erosion in wind-water erosion crisscross region of the Loess Plateau[J]. Science of Soil and Water Conservation, 2022, 20(5): 39-46. ]
[15] 李秋艳, 蔡强国, 方海燕. 风水复合侵蚀与生态恢复研究进展[J]. 地理科学进展, 2010, 29(1): 165-172.
  [Li Qiuyan, Cai Qiangguo, Fang Haiyan. Advances in complex erosion of wind and water and ecological restoration[J]. Progress in Geography, 2010, 29(1): 165-172. ]
[16] 王金花. 风蚀水蚀交错区流域植被覆被变化对水沙过程的作用机理研究[D]. 西安: 西安理工大学, 2017.
  [Wang Jinhua. Impact of vegetation cover change on water and sediment procession in wind-water erosion crisscross region[D]. Xi’an: Xi’an University of Technology, 2017. ]
[17] 孙艳萍, 张晓萍, 刘建祥, 等. 黄土高原水蚀风蚀交错带植被覆盖度动态变化[J]. 干旱区研究, 2013, 30(6): 1036-1043.
  [Sun Yanping, Zhang Xiaoping, Liu Jianxiang, et al. Dynamic change of vegetation coverage in water-wind erosion ecotone in the Loess Plateau[J]. Arid Zone Research, 2013, 30(6): 1036-1043. ]
[18] 唐克丽, 侯庆春, 王斌科, 等. 黄土高原水蚀风蚀交错带和神木试区的环境背景及整治方向[J]. 水土保持研究, 1993(2): 2-15.
  [Tang Keli, Hou Qingchun, Wang Binke, et al. The environment background and administration way of wind-water erosion crisscross region and Shenmu experimental area on the Loess Plateau[J]. Research of Soil and Water Conservation, 1993(2): 2-15. ]
[19] 杨灿, 魏天兴, 李亦然, 等. 黄土高原水蚀风蚀交错区退耕还林工程前后NDVI时空变化特征[J]. 北京林业大学学报, 2021, 43(6): 83-91.
  [Yang Can, Wei Tianxing, Li Yiran, et al. Spatiotemporal variations of NDVI before and after implementation of grain for green project in wind-water erosion crisscross region of the Loess Plateau[J]. Journal of Beijing Forestry University, 2021, 43(6): 83-91. ]
[20] 赵国永, 韩艳, 刘明华, 等. 1961—2013年河南省极端降水事件时空变化特征[J]. 水土保持研究, 2018, 25(6): 115-120.
  [Zhao Guoyong, Han Yan, Liu Minghua, et al. Spatial-temporal variation of extreme precipitation events in Henan Province from 1961 to 2013[J]. Research of Soil and Water Conservation, 2018, 25(6): 115-120. ]
[21] 董林垚, 张平仓, 刘纪根, 等. 太阳黑子和ENSO对日本吉野川流域水文要素影响[J]. 水科学进展, 2017, 28(5): 671-680.
  [Dong Linyao, Zhang Pingcang, Liu Jigen, et al. Combined influence of solar activity and ENSO on hydrological processes in YoShino River Basin, Japan[J]. Advances in Water Science, 2017, 28(5): 671-680. ]
[22] Stocker T F, Qin D, Plattner G K, et al. Climate change 2013:The physical science basis. Contribution of working group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2014: 752-760.
[23] 武文博, 游庆龙, 王岱. 基于均一化降水资料的中国极端降水特征分析[J]. 自然资源学报, 2016, 31(6): 1015-1026.
  [Wu Wenbo, You Qinglong, Wang Dai. Characteristics of extreme precipitation in China based on homogenized precipitation data[J]. Journal of Natural Resources, 2016, 31(6): 1015-1026. ]
[24] 朱飙. 西北地区气候暖湿化背景下水汽、潜在蒸散及极端温度和降水的变化特征[D]. 兰州: 兰州大学, 2022.
  [Zhu Biao. Variation characteristics of vapor, potential evapotranspiration and extreme temperature and precipitation under the background of warming-wetting in northwest China[D]. Lanzhou: Lanzhou University, 2022. ]
[25] 慎璐璐, 杨艳芬, 吴晶, 等. 黄河流域极端气候事件时空变化规律[J]. 水土保持研究, 2022, 29(2): 231-242.
  [Shen Lulu, Yang Yanfen, Wu Jing, et al. Spatial and temporal variation characteristics of extreme climate events in the Yellow River Basin[J]. Research of Soil and Water Conservation, 2022, 29(2): 231-242. ]
[26] Dong X, Zhang S, Zhou J, et al. Magnitude and frequency of temperature and precipitation extremes and the associated atmospheric circulation patterns in the Yellow River Basin (1960—2017), China[J]. Water, 2019, 11(11): 2334, doi:10.3390/w11112334.
[27] 任玉玲. 黄土高原极端气候变化及对河流水沙影响的评估与预测[D]. 杨凌: 西北农林科技大学, 2022.
  [Ren Yuling. Evaluation and projection of extreme climate changes and its impacts on river runoff and sediment load on the Loess Plateau[D]. Yangling: Northwest A & F University, 2022. ]
[28] Zhao X, Li Z, Zhu Q, et al. Change of precipitation characteristics in the water-wind erosion crisscross region on the Loess Plateau, China, from 1958 to 2015[J]. Scientific Reports, 2017, 7(1): 8048, doi:10.1038/s41598-017-08600-y.
[29] Sch?r C, Lüti D, Beyrle U, et al. The soil-precipitation feedback: A process study with a regional climate model[J]. Journal of Climate, 1999, 12(3): 722-741.
[30] Cai Q F, Liu Y, Fang C X, et al. Insight into spatial-temporal patterns of hydroclimate change on the Chinese Loess Plateau over the past 250 years, using new evidence from tree rings[J]. Science of the Total Environment, 2022, 850: 157960, doi: 10.1016/j.scitotenv.2022.157960.
[31] 徐洁, 毕宇珠, 雷秋良, 等. 1961—2020年宁夏地区极端气候变化趋势及影响因素分析[J]. 中国农业资源与区划, 2022, 43(12): 159-171.
  [Xu Jie, Bi Yuzhu, Lei Qiuliang, et al. Analysis of extreme climate change trends and influencing factors from 1961 to 2020 in Ningxia Hui Autonomous Region, China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(12): 159-171. ]
[32] 刘新伟, 王澄海, 郭润霞, 等. 1981—2018年甘肃省极端暴雨天气过程的气候与环流特征[J]. 干旱气象, 2021, 39(5): 750-758.
  [Liu Xinwei, Wang Chenghai, Guo Runxia, et al. Climate and circulation characteristics of extreme rainstorm processes in Gansu from 1981 to 2018[J]. Journal of Arid Meteorology, 2021, 39(5): 750-758. ]
[33] 张菁, 张珂, 王晟, 等. 陕甘宁三河源区1971—2017年极端降水时空变化分析[J]. 河海大学学报(自然科学版), 2021, 49(3): 288-294.
  [Zhang Jing, Zhang Ke, Wang Sheng, et al. Spatiotemporal variation analysis of extreme precipitation in the Three River Source Area of the Shaanxi-Gansu-Ningxia contiguous region from 1971 to 2017[J]. Journal of Hohai University (Natural Sciences Edition), 2021, 49(3): 288-294. ]
[34] 史维良, 车璐阳, 李涛. 陕西省汛期极端降水概率分布及综合危险性评估[J]. 干旱区地理, 2023, 46(9): 1407-1417.
  [Shi Weiliang, Che Luyang, Li Tao. Probability distribution and comprehensive risk assessment of extreme precipitation in flood season in Shaanxi Province[J]. Arid Land Geography, 2023, 46(9): 1407-1417. ]
[35] 赵庆云, 傅朝, 刘新伟, 等. 西北东部暖区大暴雨中尺度系统演变特征[J]. 高原气象, 2017, 36(3): 697-704.
  [Zhao Qingyun, Fu Chao, Liu Xinwei, et al. Characteristics of mesoscale system evolution of torrential rain in warm sector over northwest China[J]. Plateau Meteorology, 2017, 36(3): 697-704. ]
[36] 贾艳青, 张勃, 张耀宗, 等. 长江三角洲地区极端气温事件变化特征及其与ENSO的关系[J]. 生态学报, 2017, 37(19): 6402-6414.
  [Jia Yanqing, Zhang Bo, Zhang Yaozong, et al. Correlation analysis of variation of extreme temperature events and ENSO in Yangtze River Delta region during 1960—2014[J]. Acta Ecologica Sinica, 2017, 37(19): 6402-6414. ]
[37] 黄建平, 陈文, 温之平, 等. 新中国成立70年以来的中国大气科学研究: 气候与气候变化篇[J]. 中国科学: 地球科学, 2019, 49(10): 1607-1640.
  [Huang Jianping, Chen Wen, Wen Zhiping, et al. Review of Chinese atmospheric science research over the past 70 years: Climate and climate change[J]. Scientia Sinica Terrae, 2019, 49(10): 1607-1640. ]
[38] 陈文. 太阳黑子活动与海平面温度的相关性分析[D]. 上海: 上海师范大学, 2022.
  [Chen Wen. Correlation analysis between sunspot activity and sea surface temperature[D]. Shanghai: Shanghai Normal University, 2022. ]
[39] Zhou T, Wu B, Dong L. Advances in research of ENSO changes and the associated impacts on Asian-Pacific climate[J]. Asia-Pacific Journal of Atmospheric Sciences, 2014, 50: 405-422.
[40] Chen F, Chen J, Huang W, et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-science Reviews, 2019, 192: 337-354.
文章导航

/