近40 a来秦岭及周边地区极端降水变化特征
收稿日期: 2023-07-21
修回日期: 2023-10-06
网络出版日期: 2024-03-29
基金资助
陕西省重点研发计划(2022SF-360);中国气象局创新发展专项(CXFZ2022J023);陕西省自然基金(S2023-JC-QN-2729)
Variation characteristics of extreme precipitation in Qinling and surrounding areas over the past 40 years
Received date: 2023-07-21
Revised date: 2023-10-06
Online published: 2024-03-29
利用1980—2021年秦岭及周边地区337个气象监测站逐日降水资料,分析了极端降水的时空变化特征,并采用广义极值分布、气候统计等方法,对比了第一阶段(1980—2000年)和第二阶段(2001—2021年)极端降水年及春、夏、秋各季节的差异变化。结果表明:(1) 秦岭及周边地区极端降水主要集中在4—11月,其中7月极端降水日数最多,近40 a来极端降水整体呈增加趋势。日极端降水阈值、最大日降水量空间分布呈现东南高于西北,极端降水日数则呈现以秦岭为界,南部多、北部少。(2) 从全年角度看,2001—2021年较1980—2000年极端降水事件更多,极端性更强。日极端降水阈值、极端降水日数、最大日降水量的空间变化趋势总体也表现为增多趋势的站点数多于减少趋势的站点数。(3) 极端降水季节性差异明显,春季与夏季和秋季呈现出明显的不同。不管是极端降水概率还是极端降水次数,在春季总体表现为1980—2000年极端性更高,而夏季和秋季表现为2001—2021年更强。空间分布季节性差异也较明显,春季日极端降水阈值、极端降水日数总体表现为西部增加东部减小,从西向东表现为由正向负转变的分布,且负趋势站点多于正趋势站点。而夏季和秋季日极端降水阈值、极端降水日数呈增加趋势的站点超过呈减少趋势的站点,特别是秋季增加趋势的站点占比更多。
张宏芳 , 潘留杰 , 卢珊 , 沈姣姣 . 近40 a来秦岭及周边地区极端降水变化特征[J]. 干旱区地理, 2024 , 47(3) : 380 -390 . DOI: 10.12118/j.issn.1000-6060.2023.377
Based on daily precipitation data from 337 meteorological monitoring stations in Qinling Mountains and surrounding areas during 1980—2021, the spatiotemporal characteristics of extreme precipitation were analyzed. The generalized extreme value distribution and climate statistics methods were used to compare the differences in extreme precipitation years and seasons (spring, summer, and autumn) between two phases: the first phase (1980—2000) and the second phase (2001—2021). The results are as follows: (1) Extreme precipitation in Qinling and surrounding areas mainly concentrated from April to November, with July registering the highest number of extreme precipitation days. Over the past 40 years, extreme precipitation has shown an overall increasing trend. Spatially, the southeast exhibits higher values for the extreme daily precipitation threshold and daily maximum precipitation than the northwest. Additionally, a clear boundary along the north-south direction, aligning with the Qinling, highlights more occurrences in the southern region than in the northern region. (2) On an annual scale, there is a discernible rise in both the number and intensity of extreme precipitation events during 2001—2021 compared with 1980—2000. The spatial changes in the extreme daily precipitation threshold, the number of extreme precipitation days, and daily maximum precipitation also show an overall increasing trend, with more meteorological stations exhibiting an increasing trend. (3) Considerable seasonal differences in extreme precipitation exist, particularly between spring and summer/autumn. The probability and frequency of extreme precipitation were generally higher in spring during 1980—2000, whereas in 2001—2021, extreme precipitation peaks in summer and autumn. Spatial distribution differences are also evident. In spring, the extreme daily precipitation threshold and the number of extreme precipitation days generally show an increasing trend in the western region, contrasting with a decreasing trend in the eastern region, transitioning from positive to negative values. A greater number of stations display a decreasing trend than an increasing trend. In contrast, in summer and autumn, the number of stations demonstrating an increase in the extreme daily precipitation threshold and the number of extreme precipitation days exceeds those witnessing decreasing trends, particularly in autumn, where the proportion of stations with increasing trends is higher.
[1] | Goswami B N, Venugopal V, Sengupta D, et al. Increasing trend of extreme rain events over India in a warming environment[J]. Science, 2006, 314(5804): 1442-1445. |
[2] | Osborn T J, Hulme M, Jones P D, et al. Observed trends in the daily intensity of United Kingdom precipitation[J]. International Journal of Climatology, 2000, 20(4): 347-364. |
[3] | Howarth M E, Thorncroft C D, Bosart L F. Changes in extreme precipitation in the northeast United States: 1979—2014[J]. Journal of Hydrometeorology, 2019, 20(4): 673-689. |
[4] | Yamamoto R, Sakurai Y. Long-term intensification of extremely heavy rainfall intensity in recent 100 years[J]. World Resource Review, 1999, 11(2): 271-281. |
[5] | 樊星, 秦圆圆, 高翔. IPCC第六次评估报告第一工作组报告主要结论解读及建议[J]. 环境保护, 2021, 49(增刊2): 437-444. |
[Fan Xing, Qin Yuanyuan, Gao Xiang. Interpretation of the main conclusions and suggestions of IPCC AR6 Working Group I Report[J]. Environmental Conservation, 2021, 49(suppl. 2): 437-444.] | |
[6] | Zhou X Y, Bai Z J, Yang Y H. Linking trends in urban extreme rainfall to urban flooding in China[J]. International Journal of Climatology, 2017, 37(13): 4586-4593. |
[7] | 陈海山, 朱月佳, 刘蕾. 长江中下游地区冬季极端降水事件与天气尺度瞬变波活动的可能联系[J]. 大气科学, 2013, 37(4): 801-814. |
[Chen Haishan, Zhu Yuejia, Liu Lei. Relationship of synoptic-scale transient eddies and extreme winter precipitation events in the middle and lower reaches of the Yangtze River[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(4): 801-814.] | |
[8] | Li W, Chen Y. Detectability of the trend in precipitation characteristics over China from 1961 to 2017[J]. International Journal of Climatology, 2021,41(suppl. 1): E1980-E1991. |
[9] | Ma S M, Zhou T J, Stone D A, et al. Detectable anthropogenic shift toward heavy precipitation over eastern China[J]. Journal of Climate, 2017, 30(4): 1381-1396. |
[10] | 贺冰蕊, 翟盘茂. 中国1961—2016年夏季持续和非持续性极端降水的变化特征[J]. 气候变化研究进展, 2018, 14(5): 437-444. |
[He Bingrui, Zhai Panmao. Characteristics of the persistent and non-persistent extreme precipitation in China from 1961 to 2016[J]. Climate Change Research, 2018, 14(5): 437-444.] | |
[11] | Zhai P M, Zhang X B, Wan H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China[J]. Journal of Climate, 2005, 18(7): 1096-1108. |
[12] | 杨玮, 程智. 近53年江淮流域梅汛期极端降水变化特征[J]. 气象, 2015, 41(9): 1126-1133. |
[Yang Wei, Cheng Zhi. Variation characteristics of extreme precipitation during meiyu flood period over Yangtze-Huaihe Basin in recent 53 years[J]. Meteorogical Monthly, 2015, 41(9): 1126-1133.] | |
[13] | 陈冬冬, 戴永久. 近五十年我国西北地区降水强度变化特征[J]. 大气科学, 2009, 33(5): 923-935. |
[Chen Dongdong, Dai Yongjiu. Characteristics of northwest China rainfall intensity in recent 50 years[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(5): 923-935.] | |
[14] | 田付友, 杨舒楠, 郑永光, 等. 北京地区两次极端特大暴雨过程中短时强降水环境条件对比分析[J]. 暴雨灾害, 2021, 40(1): 27-36. |
[Tian Fuyou, Yang Shunan, Zheng Yongguang, et al. Comparison of short-duration heavy rainfall environmental conditions during two extreme torrential rainfall events over Beijing area[J]. Torrential Rain and Disasters, 2021, 40(1): 27-36.] | |
[15] | Jiang X M, Yuan H L, Xue M, et al. Analysis of a heavy rainfall event over Beijing during 21-22 July 2012 based on high resolution model analyses and forecasts[J]. Journal of Meteorological Research, 2014, 28(2): 199-212. |
[16] | 甘璐, 郭文利, 邓长菊. 北京地区两次特大暴雨过程的对比分析[J]. 干旱气象, 2017, 35(2): 239-249. |
[Gan Lu, Guo Wenli, Deng Changju. Comparative analysis of two torrential rain processes in Beijing[J]. Journal of Arid Meteorology, 2017, 35(2): 239-249.] | |
[17] | 布和朝鲁, 诸葛安然, 谢作威, 等. 2021年“7.20”河南暴雨水汽输送特征及其关键天气尺度系统[J]. 大气科学, 2022, 46(3): 725-744. |
[Bueh Cholaw, Zhuge Anran, Xie Zuowei, et al. Water vapor transportation features and key synoptic-scale systems of the “7.20” rainstorm in Henan Province in 2021[J]. Chinese Journal of Atmospheric Sciences, 2022, 46(3): 725-744.] | |
[18] | 郑祚芳, 王在文, 高华. 北京地区夏季极端降水变化特征及城市化的影响[J]. 气象, 2013, 39(12): 1635-1641. |
[Zhen Zuofang, Wang Zaiwen, Gao Hua. Characteristics of extreme precipitation events in summer and its effect on urbanization in Beijing area[J]. Meteorogical Monthly, 2013, 39(12): 1635-1641.] | |
[19] | 王钊, 罗慧, 李亚丽, 等. 近50年秦岭南北不均匀增温及对城市化响应[J]. 应用气象学报, 2016, 27(1): 85-94. |
[Wang Zhao, Luo Hui, Li Yali, et al. Effects of urbanization on temperatures over the Qinling Mountains in the past 50 years[J]. Journal of Applied Meteorological Science, 2016, 27(1): 85-94.] | |
[20] | 李双双, 汪成博, 延军平, 等. 面向事件过程的秦岭南北极端降水时空变化特征[J]. 地理学报, 2020, 75(5): 989-1007. |
[Li Shuangshuang, Wang Chengbo, Yan Junping, et al. Variability of the event-based extreme precipitation in the south and north Qinling Mountains[J]. Acta Geographica Sinica, 2020, 75(5): 989-1007.] | |
[21] | 毕旭, 王丽, 张雅斌, 等. 陕西秦岭北麓致灾短时暴雨特征及预警技术[J]. 灾害学, 2019, 34(2): 122-127. |
[Bi Xu, Wang Li, Zhang Yabin, et al. Characteristics and early warning technology of short-time rainstorm along the northern side of Qinling Mountains in Shaanxi Province[J]. Journal of Catastrophology, 2019, 34(2): 122-127.] | |
[22] | 王楠, 赵强, 井宇, 等. 秦岭北麓一次冷锋触发的短时强降水成因分析[J]. 高原气象, 2018, 37(5): 1277-1288. |
[Wang Nan, Zhao Qiang, Jing Yu, et al. Causation analysis of a short-time strong rainfall triggered by cold front at the northern piedmont of Qinling Mountains[J]. Plateau Meteorology, 2018, 37(5): 1277-1288.] | |
[23] | 张明, 李国胜. 关中地区极端降水时空变化及概率特征研究[J]. 人民黄河, 2021, 343(11): 59-64. |
[Zhang Ming, Li Guosheng. Trend analysis and statistical distribution of extreme rainfall in Guanzhong area[J]. Yellow River, 2021, 343(11): 59-64.] | |
[24] | 杨涵洧, 龚志强, 王晓娟, 等. 中国东部夏季极端降水年代际变化特征及成因分析[J]. 大气科学, 2021, 45(3): 683-696. |
[Yang Hanwei, Gong Zhiqiang, Wang Xiaojuan, et al. Analysis of the characteristics and causes of interdecadal changes in the summer extreme precipitation over eastern China[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(3): 683-696.] | |
[25] | 李湘瑞, 范可, 徐志清. 2000年后中国北方东部地区夏季极端降水减少及水汽输送特征[J]. 大气科学, 2019, 43(5): 1109-1124. |
[Li Xiangrui, Fan Ke, Xu Zhiqing. Decrease in extreme precipitation in summer over east northern China and the water-vapor transport characteristics after year 2000[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(5): 1109-1124.] | |
[26] | 陈红专. 湖南极端降水的气候特征及天气系统分型研究[J]. 气象, 2021, 47(10): 1219-1232. |
[Chen Hongzhuan. Climatic characteristics and weather system classification of extreme precipitation in Hunan Province[J]. Meteorogical Monthly, 2021, 47(10): 1219-1232.] | |
[27] | 王颖, 刘晓冉, 程炳岩, 等. 广义极值分布在重庆短历时极值降水中的应用[J]. 气象, 2019, 45(6): 820-830. |
[Wang Ying, Liu Xiaoran, Cheng Bingyan, et al. Application of generalized extreme value distribution model to short-duration extreme precipitation in Chongqing[J]. Meteorogical Monthly, 2019, 45(6): 820-830.] | |
[28] | 李建, 宇如聪, 孙蟩. 从小时尺度考察中国东部极端降水的持续性和季节特征[J]. 气象学报, 2013, 71(4): 652-659. |
[Li Jian, Yu Rucong, Sun Wei. Duration and seasonality of the hourly extreme rainfall in the central-eastern part of China[J]. Acta Meteorologica Sinica, 2013, 71(4): 652-659.] | |
[29] | 宋晓猛, 张建云, 孔凡哲, 等. 基于极值理论的北京市极端降水概率分布研究[J]. 中国科学: 技术科学, 2018, 48(6): 639-650. |
[Song Xiaomeng, Zhang Jianyun, Kong Fanzhe, et al. Probability distribution of extreme precipitation in Beijing based on extreme value theory[J]. Scientia Sinica Technologica, 2018, 48(6): 639-650.] | |
[30] | 张宏芳, 潘留杰, 陈昊明, 等. 秦岭及周边地区暖季降水日变化及其成因分析[J]. 高原气象, 2020, 39(5): 935-946. |
[Zhang Hongfang, Pan Liujie, Chen Haoming, et al. Diurnal variations and causes of warm season precipitation in Qinling and surrounding areas[J]. Plateau Meteorology, 2020, 39(5): 935-946.] | |
[31] | 黄鑫, 焦黎, 马晓飞, 等. 基于RClimDex模型的近60 a中亚极端降水事件变化特征[J]. 干旱区地理, 2023, 46(7): 1039-1051. |
[Huang Xin, Jiao Li, Ma Xiaofei, et al. Change characteristics of extreme precipitation events in Central Asia in recent 60 years based on RClimDex model[J]. Arid Land Geography, 2023, 46(7): 1039-1051.] | |
[32] | 史维良, 车璐阳, 李涛. 陕西省汛期极端降水概率分布及综合危险性评估[J]. 干旱区地理, 2023, 46(9): 1407-1417. |
[Shi Weiliang, Che Luyang, Li Tao. Probability distribution and comprehensive risk assessment of extreme precipitation in flood season in Shaanxi Province[J]. Arid Land Geography, 2023, 46(9): 1407-1417.] |
/
〈 |
|
〉 |