不同温升情景下中国旱灾风险变化评估
收稿日期: 2023-08-23
修回日期: 2023-10-11
网络出版日期: 2024-03-29
基金资助
国家自然科学基金面上基金项目(42077436);国家重点研发计划项目(2019YFA0606900)
Assessment of drought risk changes in China under different temperature rise scenarios
Received date: 2023-08-23
Revised date: 2023-10-11
Online published: 2024-03-29
干旱是致灾最为严重的极端气候事件之一,研究未来气候变暖背景下旱灾风险的变化有利于科学推进防灾减灾工作部署。利用第六次国际耦合模式比较计划的20个气候模式数据计算了标准化降水蒸散指数,提取了基准期及全球2 ℃、3 ℃、4 ℃温升情景下中国的干旱特征变量并计算干旱危险性指数,基于承灾体预估数据计算干旱暴露度指数和干旱脆弱性指数,综合计算旱灾风险指数,从而分析中国旱灾风险分布格局并基于地理探测器对未来旱灾风险变化进行空间归因分析。结果表明:干旱危险性指数、干旱暴露度指数和干旱脆弱性指数的空间分布分别表现为西北和东南相对较高、东高西低、西高东低;旱灾风险指数具有东高西低的分布特点,呈现以高值集聚和低值集聚为主的空间正相关;随着温升水平的升高,未来旱灾风险以增加为主,东部沿海地区增加最为明显;人口数量变化、GDP变化和耕地占比变化是影响旱灾风险变化的主导因素。
卢冬燕 , 朱秀芳 , 唐明秀 , 郭春华 , 刘婷婷 . 不同温升情景下中国旱灾风险变化评估[J]. 干旱区地理, 2024 , 47(3) : 369 -379 . DOI: 10.12118/j.issn.1000-6060.2023.448
Drought is one of the most disastrous extreme climate events. Studying the changes in drought risk against the background of future global warming is beneficial for scientifically advancing disaster prevention and reduction work deployment. The standardized precipitation evapotranspiration index was calculated using data from 20 climate models from the sixth phase of the Coupled Model Intercomparison Project. Drought characteristic variables were extracted for the baseline period and global temperature rise scenarios of 2 ℃, 3 ℃, and 4 ℃ in China, and the drought hazard index (DHI) was calculated. Based on the disaster-bearing body projection data, the drought exposure index (DEI), drought vulnerability index (DVI), and drought risk index (DRI) were comprehensively calculated. The distribution pattern of drought risk in China was further analyzed, and a spatial attribution analysis of future drought risk changes was performed using a geodetector. The results showed that the spatial distribution of DHI, DEI, and DVI exhibited higher values in the northwest and southeast, a pattern of being high in the east and low in the west, and a trend of being high in the west and low in the east, respectively. Based on this, the DRI specially showed a spatial positive correlation dominated by high- and low-value clustering. With an increase in the temperature rise level, the future drought risk will mainly increase across China, and the increase in the eastern coastal areas would be the most obvious. Changes in population, gross domestic product, and the proportion of cultivated land were found to be the main factors affecting changes in drought risk.
Key words: drought risk; CMIP6; temperature rise scenario; spatial autocorrelation; geodetector
[1] | 翟盘茂, 刘静. 气候变暖背景下的极端天气气候事件与防灾减灾[J]. 中国工程科学, 2012, 14(9): 55-63. |
[Zhai Panmao, Liu Jing. Extreme weather/climate events and disaster prevention and mitigation under global warming background[J]. Strategic Study of CAE, 2012, 14(9): 55-63.] | |
[2] | IPCC. Climate change 2021: The physical science basis[M]. Cambridge: Cambridge University Press, 2023. |
[3] | 中国水旱灾害防御公报编写组. 《中国水旱灾害防御公报2020》概要[J]. 中国防汛抗旱, 2021, 31(11): 26-32. |
[Compilation Group of China Flood and Drought Disaster Prevention Bulletin. Summary of “China Flood and Drought Disaster Prevention Bulletin in 2020”[J]. China Flood & Drought Management, 2021, 31(11): 26-32.] | |
[4] | 莫兴国, 胡实, 卢洪健, 等. GCM预测情景下中国21世纪干旱演变趋势分析[J]. 自然资源学报, 2018, 33(7): 1244-1256. |
[Mo Xingguo, Hu Shi, Lu Hongjian, et al. Drought trends over the terrestrial China in the 21st century in climate change scenarios with ensemble GCM projections[J]. Journal of Natural Resources, 2018, 33(7): 1244-1256.] | |
[5] | 赵佳琪, 张强, 朱秀迪, 等. 中国旱灾风险定量评估[J]. 生态学报, 2021, 41(3): 1021-1031. |
[Zhao Jiaqi, Zhang Qiang, Zhu Xiudi, et al. Quantitative assessment of drought risk in China[J]. Acta Ecologica Sinica, 2021, 41(3): 1021-1031.] | |
[6] | 何斌, 武建军, 吕爱锋. 农业干旱风险研究进展[J]. 地理科学进展, 2010, 29(5): 557-564. |
[He Bin, Wu Jianjun, Lü Aifeng. New advances in agricultural drought risk study[J]. Progress in Geography, 2010, 29(5): 557-564.] | |
[7] | Liu Y Y, Chen J. Future global socioeconomic risk to droughts based on estimates of hazard, exposure, and vulnerability in a changing climate[J]. Science of the Total Environment, 2021, 751: 142159, doi: 10.1016/j.scitotenv.2020.142159. |
[8] | Carr?o H, Naumann G, Barbosa P. Mapping global patterns of drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability[J]. Global Environmental Change, 2016, 39: 108-124. |
[9] | Prabnakorn S, Maskey S, Suryadi F X, et al. Assessment of drought hazard, exposure, vulnerability, and risk for rice cultivation in the Mun River Basin in Thailand[J]. Natural Hazards, 2019, 97(2): 891-911. |
[10] | Fang W, Huang Q, Huang G, et al. Assessment of dynamic drought-induced ecosystem risk: Integrating time-varying hazard frequency, exposure and vulnerability[J]. Journal of Environmental Management, 2023, 342: 118176, doi: 10.1016/j.jenvman.2023.118176. |
[11] | 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445-456. |
[Zhou Tianjun, Zou Liwei, Chen Xiaolong. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5): 445-456.] | |
[12] | 景丞, 姜彤, 苏布达, 等. 共享社会经济路径在土地利用、能源与碳排放研究的应用[J]. 大气科学学报, 2022, 45(3): 397-413. |
[Jing Cheng, Jiang Tong, Su Buda, et al. Multiple application of shared socioeconomic pathways in land use, energy and carbon emission research[J]. Transactions of Atmospheric Sciences, 2022, 45(3): 397-413.] | |
[13] | Oh H, Kim H J, Mehboob M S, et al. Sources and uncertainties of future global drought risk with ISIMIP2b climate scenarios and socioeconomic indicators[J]. Science of the Total Environment, 2023, 859: 160371, doi: 10.1016/j.scitotenv.2022.160371. |
[14] | 薛雨婷, 李谢辉, 贾何佳. 基于CMIP6模式的西南地区旱灾风险未来预估[J]. 水土保持研究, 2023, 30(2): 247-255. |
[Xue Yuting, Li Xiehui, Jia Hejia. Future projection of drought risk in southwestern China based on CMIP6 model[J]. Research of Soil and Water Conservation, 2023, 30(2): 247-255.] | |
[15] | 赵松乔. 中国综合自然地理区划的一个新方案[J]. 地理学报, 1983, 38(1): 1-10. |
[Zhao Songqiao. A new scheme for comprehensive physical regionalization in China[J]. Acta Geographica Sinica, 1983, 38(1): 1-10.] | |
[16] | Zhang G, Su X, Singh V P, et al. Appraising standardized moisture anomaly index (SZI) in drought projection across China under CMIP6 forcing scenarios[J]. Journal of Hydrology: Regional Studies, 2021, 37: 100898, doi: 10.1016/j.ejrh.2021.100898. |
[17] | 吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013, 56(4): 1102-1111. |
[Wu Jia, Gao Xuejie. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013, 56(4): 1102-1111.] | |
[18] | 粟晓玲, 褚江东, 张特, 等. 西北地区地下水干旱时空演变趋势及对气象干旱的动态响应[J]. 水资源保护, 2022, 38(1): 34-42. |
[Su Xiaoling, Chu Jiangdong, Zhang Te, et al. Spatio-temporal evolution trend of groundwater drought and its dynamic response to meteorological drought in northwest China[J]. Water Resources Protection, 2022, 38(1): 34-42.] | |
[19] | O’Neill B C, Tebaldi C, van Vuuren D P, et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6[J]. Geoscientific Model Development, 2016, 9: 3461-3482. |
[20] | Danielson J J, Gesch D B. Global multi-resolution terrain elevation data 2010 (GMTED2010)[R]. Reston, VA, USA: U.S. Geological Survey, 2011. |
[21] | 姜彤, 苏布达, 王艳君, 等. 共享社会经济路径(SSPs)人口和经济格点化数据集[J]. 气候变化研究进展, 2022, 18(3): 381-383. |
[Jiang Tong, Su Buda, Wang Yanjun, et al. Gridded datasets for population and economy under shared socioeconomic pathways for 2020—2100[J]. Climate Change Research, 2022, 18(3): 381-383.] | |
[22] | Huang J L, Qin D H, Jiang T, et al. Effect of fertility policy changes on the population structure and economy of China: From the perspective of the shared socioeconomic pathways[J]. Earth's Future, 2019, 7(3): 250-265. |
[23] | Hurtt G C, Chini L, Sahajpal R, et al. Harmonization of global land use change and management for the period 850-2100 (LUH2) for CMIP6[J]. Geoscientific Model Development, 2020, 13(11): 5425-5464. |
[24] | Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D7): 7183-7192. |
[25] | GB/T 20481-2017. 中华人民共和国国家标准: 气象干旱等级[S]. 北京: 中国标准出版社, 2017. |
[GB/T 20481-2017. National Standard of the People's Republic of China: Grades of meteorological drought[S]. Beijing: Standards Press of China, 2017.] | |
[26] | 王林, 陈文. 标准化降水蒸散指数在中国干旱监测的适用性分析[J]. 高原气象, 2014, 33(2): 423-431. |
[Wang Lin, Chen Wen. Applicability analysis of standardized precipitation evapotranspiration index in drought monitoring in China[J]. Plateau Meteorology, 2014, 33(2): 423-431.] | |
[27] | Beguería S, Vicente-Serrano S M, Reig F, et al. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring[J]. International Journal of Climatology, 2014, 34(10): 3001-3023. |
[28] | Ma Z, Sun P, Zhang Q, et al. The characteristics and evaluation of future droughts across China through the CMIP6 multi-model ensemble[J]. Remote Sensing, 2022, 14: 1097, doi: 10.3390/rs14051097. |
[29] | 费振宇, 孙宏巍, 金菊良, 等. 近50年中国气象干旱危险性的时空格局探讨[J]. 水电能源科学, 2014, 32(12): 5-10. |
[Fei Zhenyu, Sun Hongwei, Jin Juliang, et al. Temporal and spatial patterns of meteorological drought hazard in China for recent 50 years[J]. Water Resources and Power, 2014, 32(12): 5-10.] | |
[30] | 徐玉霞, 许小明, 方锋, 等. 县域尺度下的宝鸡市农业洪水灾害脆弱性评价及区划[J]. 干旱区地理, 2020, 43(3): 652-660. |
[Xu Yuxia, Xu Xiaoming, Fang Feng, et al. Assessment and zoning of vulnerability of agricultural flood diaster in Baoji City based on county scale[J]. Arid Land Geography, 2020, 43(3): 652-660.] | |
[31] | 康利刚, 曹生奎, 曹广超, 等. 青海湖流域地表温度时空变化特征研究[J]. 干旱区地理, 2023, 46(7): 1084-1097. |
[Kang Ligang, Cao Shengkui, Cao Guangchao, et al. Spatiotemporal variation of land surface temperature in Qinghai Lake Basin[J]. Arid Land Geography, 2023, 46(7): 1084-1097.] | |
[32] | 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1): 116-134. |
[Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.] | |
[33] | Song Y Z, Wang J F, Ge Y, et al. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data[J]. GIScience & Remote Sensing, 2020, 57(5): 593-610. |
[34] | 卢冬燕, 朱秀芳, 刘婷婷, 等. 2 ℃温升情景下中国气象干旱特征变化[J]. 干旱区地理, 2023, 46(8): 1227-1237. |
[Lu Dongyan, Zhu Xiufang, Liu Tingting, et al. Changes in meteorological drought characteristics in China under the 2 ℃ temperature rise scenario[J]. Arid Land Geography, 2023, 46(8): 1227-1237.] | |
[35] | 尹晓东, 董思言, 韩振宇, 等. 未来50 a长江三角洲地区干旱和洪涝灾害风险预估[J]. 气象与环境学报, 2018, 34(5): 66-75. |
[Yin Xiaodong, Dong Siyan, Han Zhenyu, et al. Projected risk of drought and flood at Yangtze River Delta for the next 50 years[J]. Journal of Meteorology and Environment, 2018, 34(5): 66-75.] |
/
〈 | 〉 |