城市地理

居住自选择视角下城市建成环境对通勤模式选择的影响——以兰州市主城区为例

  • 郭燕 ,
  • 张志斌 ,
  • 陈龙 ,
  • 马晓敏 ,
  • 赵学伟
展开
  • 西北师范大学地理与环境科学学院,甘肃 兰州 730070
郭燕(1997-),女,硕士研究生,主要从事城市与区域规划等方面的研究. E-mail: g212712@126.com
张志斌(1965-),男,教授、博士生导师,主要从事城市与区域规划等方面的研究. E-mail: zbzhang@nwnu.edu.cn

收稿日期: 2023-02-21

  修回日期: 2023-04-24

  网络出版日期: 2024-03-14

基金资助

国家自然科学基金项目(41961029)

Impact of urban built environment on commuting mode choices from the residential self-selection perspective

  • GUO Yan ,
  • ZHANG Zhibin ,
  • CHEN Long ,
  • MA Xiaomin ,
  • ZHAO Xuewei
Expand
  • College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China

Received date: 2023-02-21

  Revised date: 2023-04-24

  Online published: 2024-03-14

摘要

交通方式选择研究对于城市高效、可持续和安全的交通规划至关重要。以兰州市主城区为例,基于分布式认知理论,采用调查问卷数据、路网数据、POI数据,通过结构方程模型探讨居住自选择效应影响下非随机异质性的建成环境对通勤模式选择的影响。结果表明:(1) 居民根据自身社会经济属性及态度偏好选择不同建成环境特征的住宅小区,继而形成特定的通勤模式,说明居住自选择存在偏好异质性,居住自选择效应存在。(2) 在规避居住自选择效应后,建成环境依然对通勤模式选择具有显著影响。具体来讲,人口密度、路网密度及停车位数量直接影响通勤模式选择,路网密度、公交站点可达性、地铁站点可达性及停车位数量通过中介变量通勤距离与小汽车拥有间接影响通勤模式选择。(3) 高人口密度、密路网与高可达性的建成环境通过提高道路网络的连通性、步行与公共交通的连接性进一步推动积极通勤模式与公共交通通勤模式选择,引导居民向积极通勤模式为主导的出行结构转变。

本文引用格式

郭燕 , 张志斌 , 陈龙 , 马晓敏 , 赵学伟 . 居住自选择视角下城市建成环境对通勤模式选择的影响——以兰州市主城区为例[J]. 干旱区地理, 2024 , 47(2) : 307 -318 . DOI: 10.12118/j.issn.1000-6060.2023.074

Abstract

Research on travel mode choice is essential for efficient, sustainable, and safe urban traffic planning. This study selected the main urban area of Lanzhou City, Gansu Province, China as the study area, and based on the distributed cognitive theory, questionnaire data, road network data, and Point of Interest (POI) data. The structural equation model was used to explore the impact of nonrandom heterogeneity of the built environment on selecting the commuting mode under the influence of the residential self-selection effect. The study found that: (1) Residents chose residential quarters with different built-environment characteristics according to their socioeconomic attributes and attitude preferences. Subsequently, they formed a specific commuting pattern, indicating preference heterogeneity in residential self-selection and the existence of the residential self-selection effect. (2) The built environment continued to have a considerable impact on the choice of commuting mode even after avoiding the self-selection effect of residence. Specifically, population density, road network density, and the number of parking spaces directly affected the choice of commuting mode. Road network density, bus station accessibility, subway station accessibility, and the number of parking spaces indirectly influenced the choice of commuting mode through mediating variables, such as commuting distance and car ownership. (3) High-population density, dense road network, and high-accessibility of the built environment increased the active and public transportation commuting modes. This was achieved by improving the connectivity of road networks, connection between walking and public transit, and pedestrian-friendly environment and by guiding residents to a shift in the travel structure, led by active commuting patterns.

参考文献

[1] Ma J, Liu Z L, Chai Y W. The impact of urban form on CO2 emission from work and non-work trips: The case of Beijing, China[J]. Habitat International, 2015, 47: 1-10.
[2] International Energy Agency (IEA). CO2 emissions from fuel combustion 2016[R]. Paris: International Energy Agency, 2016: 1-166.
[3] 百度地图. 2018年度中国城市交通报告[EB/OL]. [2021-01-02]. https://jiaotong.baidu.com/landings/2018annualtrafficreport.html.
  [ Baidu Map. China urban transportation report 2018[EB/OL]. [2021-01-02]. https://jiaotong.baidu.com/landings/2018annualtrafficreport.html. ]
[4] Felix N N, Monday O A. Geographically weighted logistic regression approach to explore the spatial variability in travel behaviour and built environment interactions: Accounting simultaneously for demographic and socioeconomic characteristics[J]. Applied Geography, 2019, 108: 47-63.
[5] Danique T, Dorine C, Duives, et al. Cycling or walking? Determinants of mode choice in the Netherlands[J]. Transportation Research Part A, 2019, 123(5): 7-23.
[6] Cheng L, Chen X, Yang S, et al. Active travel for active ageing in China: The role of built environment[J]. Journal of Transport Geography, 2019, 76: 142-152.
[7] Mahmoud M. Bus quality assessment using perception and attitude measures[D]. Northern Ireland: University of Ulster, 2012.
[8] Ding C, Wang D, Liu C, et al. Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance[J]. Transportation Research Part A Policy & Practice, 2017, 100(6): 65-80.
[9] Ewing R, Cervero R. Travel and the built environment: A synthesis[J]. Transportation Research Record, 2011, 1780(1): 87-114.
[10] 鲁大铭, 赵雅静, 张文佳. 中西方城市建成环境与出行行为研究比较[J]. 国际城市规划, 2023, 38(6): 59-66.
  [ Lu Daming, Zhao Yajing, Zhang Wenjia. Comparison of researches on the built environment and travel behavior of Chinese and western cities[J]. Urban Planning International, 2023, 38(6): 59-66. ]
[11] Feng J, Dijst M, Wissink B, et al. Understanding mode choice in the Chinese context: The case of Nanjing metropolitan area[J]. Science Letter, 2014. 105(3): 315-330.
[12] 孙斌栋, 但波. 上海城市建成环境对居民通勤方式选择的影响[J]. 地理学报, 2015, 70(10): 1664-1674.
  [ Sun Bindong, Dan Bo. Impact of urban built environment on residential choice of commuting mode in Shanghai[J]. Acta Geographica Sinica, 2015, 70(10): 1664-1674. ]
[13] 韦亚平, 潘聪林. 大城市街区土地利用特征与居民通勤方式研究: 以杭州城西为例[J]. 城市规划, 2016, 36(3): 76-84.
  [ Wei Yaping, Pan Conglin. Urban land-use characteristics and commuters’ travel pattern: A case study of west Hangzhou[J]. City Planning Review, 2012, 36(3): 76-84. ]
[14] Zhao Y, Chai Y W. Residents’ activity-travel behavior variation by communities in Beijing, China[J]. Chinese Geographical Science, 2013(4): 14, doi: 10.1007/s11769-013-0616-7.
[15] 孙斌栋, 阎宏, 张婷麟. 社区建成环境对健康的影响: 基于居民个体超重的实证研究[J]. 地理学报, 2016, 71(10): 1721-1730.
  [ Sun Bindong, Yan Hong, Zhang Tinglin. Impact of community built environment on residents’ health: A case study on individual overweight[J]. Acta Geographica Sinica, 2016, 71(10): 1721-1730. ]
[16] Lu Y, Sun G, Sarkar C, et al. Commuting mode choice in a high-density city: Do landuse density and diversity matter in Hong Kong?[J]. International Journal of Environmental Research and Public Health, 2018. 15(5): 920-934.
[17] Patricia L, Mokhtarian, Cao X. Examining the impacts of residential self-selection on travel behavior: A focus on methodologies[J]. Transportation Research Part B, 2007, 42(3): 204-228.
[18] 黄晓燕, 曹小曙, 殷江滨, 等. 城市轨道交通和建成环境对居民步行行为的影响[J]. 地理学报, 2020, 75(6): 1256-1271.
  [ Huang Xiaoyan, Cao Xiaoshu, Yin Jiangbin, et al. The influence of urban transit and built environment on walking[J]. Acta Geographica Sinica, 2020, 75(6): 1256-1271. ]
[19] 杨励雅, 王振波. 居住区建成环境对居民出行行为影响的分层线性模型[J]. 经济地理, 2019, 39(4): 101-108.
  [ Yang Liya, Wang Zhenbo. Impact of residential built environment on daily travel behavior[J]. Economic Geography, 2019, 39(4): 101-108. ]
[20] 张雪, 周素红, 陈菲. 基于出行链的建成环境对居民小汽车通勤出行的影响[J]. 地理科学进展, 2021, 40(4): 671-680.
  [ Zhang Xue, Zhou Suhong, Chen Fei. Impact of the built environment on residents’ car commuting based on trip chain[J]. Progress in Geography, 2021, 40(4): 671-680. ]
[21] Michael N, Bagley, Patricia L, et al. The impact of residential neighborhood type on travel behavior: A structural equations modeling approach[J]. The Annals of Regional Science, 2002, 36(2): 279-297.
[22] 曹晨, 甄峰, 姜玉培. 邻里环境感知与个体健康对通勤模式选择的影响研究——以南京市为例[J]. 地理研究, 2021, 40(10): 2823-2837.
  [ Cao Chen, Zhen Feng, Jiang Yupei. The influence of neighborhood environmental perception and individual health on commuting mode choice: A case study of Nanjing City, China[J]. Geographical Research, 2021, 40(10): 2823-2837. ]
[23] Paulus T A, Cao X, Corinne M. Understanding neighbourhood design impact on travel behaviour: An application of structural equations model to a British metropolitan data[J]. Transportation Research Part A, 2011, 46(1): 22-32.
[24] Hatch T, Gardner H. Finding cognition in the classroom:An expanded view of human intelligence in Salomon G. Distributed cognitions: Psychological and educational considerations[M]. Cambridge: Cambridge University Press, 1993: 164-188.
[25] 吴萌, 甘臣林, 任立, 等. 分布式认知理论框架下农户土地转出意愿影响因素研究——基于SEM模型的武汉城市圈典型地区实证分析[J]. 中国人口·资源与环境, 2016, 26(9): 62-71.
  [ Wu Meng, Gan Chenlin, Ren Li, et al. Analysis on influencing factors of farming households’ willingness to land conversion under the distributed cognition theory: An empirical evaluation of Wuhan urban cirele by SEM[J]. China Population, Resoures and Environment, 2016, 26(9): 62-71. ]
[26] 任立, 吴萌, 甘臣林, 等. 城市近郊区农户土地投入风险认知及影响因素研究: 基于分布式认知理论的微观调查实证[J]. 中国土地科学, 2019, 33(9): 66-73.
  [ Ren Li, Wu Meng, Gan Chenlin, et al. Influencing factors of farmers’ risk perception on land investment in the suburbs: An empirical research based on DCT[J]. China Land Science, 2019, 33(9): 66-73. ]
[27] 杨永春, 孙燕, 李建新, 等. 藏、汉对比视角下的城市空间环境认知研究——以中国西藏日喀则市为例[J]. 地理科学, 2019, 39(2): 334-341.
  [ Yang Yongchun, Sun Yan, Li Jianxin, et al. Urban spatial environmental cognition of both Tibetan and Han from a comparative perspective: A case study of Shigatse in Tibet[J]. Scientia Geographica Sinica, 2019, 39(2): 334-341. ]
[28] 潘爱华, 李梦梦, 孙前路. 分布式认知理论视角下农户畜禽粪污处理参与意愿研究——基于异构选择有序Logit模型的分析[J]. 高原农业, 2021, 5(2): 191-200.
  [ Pan Aihua, Li Mengmeng, Sun Qianlu. Farmers’ awareness of rural human environment and their willingness to participate in sewage treatment: Based on heterogeneous selection ordered logit model[J]. Journal of Plateau Agriculture, 2021, 5(2): 191-200. ]
[29] 张晶飞, 秦耀辰, 张丽君, 等. 建成环境对居民绿色消费意愿的影响——来自郑州的实证研究[J]. 地理研究, 2021, 40(10): 2914-2929.
  [ Zhang Jingfei, Qin Yaochen, Zhang Lijun, et al. Influence of the built environment on urban residential green consumption willingness in Zhengzhou, China[J]. Geographical Research, 2021, 40(10): 2914-2929. ]
[30] 杨文越, 曹小曙. 居住自选择视角下的广州出行碳排放影响机理[J]. 地理学报, 2018, 73(2): 346-361.
  [ Yang Wenyue, Cao Xiaoshu. The influence mechanism of travel-related CO2 emissions from the perspective of residential self-selection: A case study of Guangzhou[J]. Acta Geographica Sinica, 2018, 73(2): 346-361. ]
[31] 李鸿飞, 何颖茹, 毕晓莉. 黄河流域兰州段生态环境与高质量发展耦合协调关系研究[J]. 干旱区地理, 2022, 45(4): 1244-1253.
  [ Li Hongfei, He Yingru, Bi Xiaoli. Coupling coordination relationship between ecological environment and high-quality development in Lanzhou section of Yellow River Basin[J]. Arid Land Geography, 2022, 45(4): 1244-1253. ]
[32] 吴明隆. 结构方程模型——AMOS的操作与应用[M]. 重庆: 重庆大学出版社, 2010: 5-52.
  [ Wu Minglong. The structural equation model: Operation and application of AMOS[M]. Chongqing: Chongqing University Press, 2010: 5-52. ]
[33] Zhang M. The role of land use in travel mode choice: Evidence from Boston and Hong Kong[J]. Journal of the American Planning Association, 2004, 70(3): 344-360.
[34] 晁勐, 张俊, 刘翔. 兰州市主城区房价分异及驱动因素研究[J]. 干旱区地理, 2022, 45(6): 2004-2012.
  [ Chao Meng, Zhang Jun, Liu Xiang. Research on housing price differentiation and driving factors in central urban area of Lanzhou City[J]. Arid Land Geography, 2022, 45(6): 2004-2012. ]
[35] Mark R S. Does compact development make people drive less?[J]. Journal of the American Planning Association, 2016, 83(1): 7-18.
文章导航

/