地表过程研究

基于RWEQ模型的疏勒河流域防风固沙功能价值评估

  • 蔺阿荣 ,
  • 周冬梅 ,
  • 马静 ,
  • 朱小燕 ,
  • 江晶 ,
  • 张军
展开
  • 1.甘肃农业大学管理学院,甘肃 兰州 730070
    2.甘肃农业大学资源与环境学院,甘肃 兰州 730070
    3.甘肃省节水农业工程技术研究中心,甘肃 兰州 730070
蔺阿荣(1999-),女,硕士研究生,主要从事生态系统服务方面的研究. E-mail: linarong2023@163.com

收稿日期: 2023-07-02

  修回日期: 2023-09-13

  网络出版日期: 2024-01-26

基金资助

甘肃省科技厅重点研发计划-农业领域(23YFNA0036);甘肃省自然科学基金项目(21JR7RA811);甘肃省林业和草原科技创新计划(LCKJCX202205);国家重点研发项目课题(2022YFD1900203)

Evaluation of wind prevention and sand fixation function in Shule River Basin based on RWEQ model

  • Arong LIN ,
  • Dongmei ZHOU ,
  • Jing MA ,
  • Xiaoyan ZHU ,
  • Jing JIANG ,
  • Jun ZHANG
Expand
  • 1. College of Management, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2. College of Resources and Environmental Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3. Research Center for Water Saving Agriculture in Gansu Province, Lanzhou 730070, Gansu, China

Received date: 2023-07-02

  Revised date: 2023-09-13

  Online published: 2024-01-26

摘要

疏勒河流域地处西北内陆,是“一带一路”的关键节点。近年来随着全球变化与经济社会活动强度增加,导致建设用地快速扩张、土地沙化等问题,影响区域生态与经济社会的可持续发展。疏勒河流域处于北方防沙带中心,开展其防风固沙价值评估对于构建区域生态安全格局和保障流域可持续发展具有重要生态意义。基于修正风蚀方程模型(RWEQ)对2008—2018年疏勒河流域防风固沙功能及其价值进行评估。结果表明:(1) 2008—2018年疏勒河流域防风固沙总量为43.927×104~129.530×104 t·km-2,防风固沙量呈上升趋势。(2) 2008—2018年疏勒河流域防风固沙价值快速增加,其多年平均价值占比由高到低依次为减少土地损失价值(99.46%)、保持土壤肥力价值(0.47%)、保持土壤有机质价值(0.04%)、减少交通运输经济损失价值(0.03%)。(3) 流域防风固沙功能与土地利用密切相关,防风固沙能力较强的区域主要分布在草地、耕地等植被覆盖率较高区域;低值区主要分布在流域土地利用类型为未利用地区域。(4) 相较社会因素,自然指标因子对流域防风固沙功能价值影响更大。研究结果可为确定流域生态补偿主客体及补偿标准提供依据。

本文引用格式

蔺阿荣 , 周冬梅 , 马静 , 朱小燕 , 江晶 , 张军 . 基于RWEQ模型的疏勒河流域防风固沙功能价值评估[J]. 干旱区地理, 2024 , 47(1) : 58 -67 . DOI: 10.12118/j.issn.1000-6060.2023.333

Abstract

The Shule River Basin is located in the northwest inland region of China and is a key node of the Belt and Road Initiative. In recent years, with the increasing intensity of global changes and economic and social activities, problems, such as the rapid expansion of construction land and desertification have affected the sustainable development of regional ecology and economic society. The Shule River Basin is located at the center of the northern sand prevention belt of China, and an evaluation of its wind prevention and sand fixation value is of great ecological significance for building a regional ecological security pattern and ensuring sustainable development of the basin. On the basis of the revised wind erosion equation model, the value of wind prevention and sand fixation in the Shule River Basin from 2008 to 2018 was evaluated. The results are as follows: (1) The total amount of wind prevention and sand fixation in the Shule River Basin from 2008 to 2018 was 43.927×104 to 129.530×104 t·km−2, with an increasing trend in wind prevention and sand fixation capacity. (2) The value of wind prevention and sand fixation in the Shule River Basin rapidly increased from 2008 to 2018, with an annual average value ranging from high to low to reduce the value of land loss (99.46%), maintain the value of soil fertility (0.47%), maintain the value of soil organic matter (0.04%), and reduce the value of economic loss of transportation (0.03%). (3) The function of wind prevention and sand fixation in river basins is closely related to land use. Among them, the areas with stronger windproof and sand-fixing capability are primarily distributed in grassland, cropland, and other areas with higher vegetation cover; the low-value areas are primarily distributed in unused land of the land use type of the river basin. (4) Natural indicator factors have a greater impact on the value of wind and sand fixation functions in river basins than social factors. These findings can provide a basis for determining the subject and object of ecological compensation and compensation standards in the Shule River Basin.

参考文献

[1] 崔桂鹏, 肖春蕾, 雷加强, 等. 大国治理: 中国荒漠化防治的战略选择与未来愿景[J]. 中国科学院院刊, 2023, 38(7): 943-955.
[1] [Cui Guipeng, Xiao Chunlei, Lei Jiaqiang, et al. China’s governance: Strategy choice and future vision for combating desertification[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(7): 943-955.]
[2] Li D J, Xu D Y. Sand fixation function response to climate change and land use in northern China from 1981 to 2015[J]. Aeolian Research, 2019, 40: 23-33.
[3] 周凡, 周冬梅, 金银丽, 等. 疏勒河流域生态系统服务供需空间匹配特征[J]. 干旱区地理, 2023, 46(3): 471-480.
[3] [Zhou Fan, Zhou Dongmei, Jin Yinli, et al. Spatial matching characteristics of supply and demand of ecosystem services in the Shule River Basin[J]. Arid Land Geography, 2023, 46(3): 471-480.]
[4] 杨静, 周冬梅, 马静, 等. 疏勒河流域农业水土资源时空匹配特征分析[J]. 干旱区地理, 2023, 46(6): 982-992.
[4] [Yang Jing, Zhou Dongmei, Ma Jing, et al. Spatial and temporal matching characteristics of agricultural land and water resources in the Shule River Basin[J]. Arid Land Geography, 2023, 46(6): 982-992.]
[5] 潘竟虎, 董磊磊. 2001—2010年疏勒河流域生态系统质量综合评价[J]. 应用生态学报, 2016, 27(9): 2907-2915.
[5] [Pan Jinghu, Dong Leilei. Comprehensive evaluation of ecosystem quality in the Shule River Basin, northwest China from 2001 to 2010[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 2907-2915.]
[6] 齐敬辉. 疏勒河流域绿洲生态演变研究[D]. 兰州: 兰州大学, 2017.
[6] [Qi Jinghui. The research on oasis ecological evolution of Shule River Basin[D]. Lanzhou: Lanzhou University, 2017.]
[7] 赖锋, 乔占明, 熊增连. 青海省风蚀量及防风固沙量时空特征分析[J]. 测绘科学, 2023, 48(1): 148-156.
[7] [Lai Feng, Qiao Zhanming, Xiong Zenglian. Spatiotemporal characteristics of wind erosion and wind prevention and sand fixation in Qinghai Province[J]. Science of Surveying and Mapping, 2023, 48(1): 148-156.]
[8] Bagnold R A. A further journey through the Libyan desert[J]. Geographical Journal, 1933, 82(2): 103-126.
[9] Woodruff N P, Siddoway F H. A wind erosion equation[J]. Soil Science Society of America Journal, 1965, 29(5): 602-608.
[10] Gregory J M, Wilson G R, Singh U B, et al. TEAM: Integrated, process-based wind-erosion model[J]. Environmental Modelling & Software, 2004, 19(2): 205-215.
[11] Bocharov A P. A description of devices used in the study of wind erosion of soils[M]. New Delhi: Oxonian Press, 1984.
[12] Van Pelt R S, Zobeck T M, Potter K N, et al. Validation of the wind erosion stochastic simulator (WESS) and the revised wind erosion equation (RWEQ) for single events[J]. Environmental Modelling & Software, 2004, 19(2): 191-198.
[13] Fryrcar D W, Chen W N, Lester C. Revised wind erosion equation[J]. Annals of Arid Zone, 2001, 40(3): 265-279.
[14] Fryrear D W, Bilbro J D, Saleh A, et al. RWEQ: Improved wind erosion technology[J]. Journal of Soil and Water Conservation, 2000, 55(2): 183-189.
[15] Hagen L J. Evaluation of the wind erosion prediction system (WEPS) erosion sub model on cropland fields[J]. Environmental Modelling & Software, 2004, 19(2): 171-176.
[16] 巩国丽, 刘纪远, 邵全琴. 基于RWEQ的20世纪90年代以来内蒙古锡林郭勒盟土壤风蚀研究[J]. 地理科学进展, 2014, 33(6): 825-834.
[16] [Gong Guoli, Liu Jiyuan, Shao Quanqin. Wind erosion in Xilingol League, Inner Mongolia since the 1990s using the revised wind erosion equation[J]. Progress in Geography, 2014, 33(6): 825-834.]
[17] 王洋洋, 肖玉, 谢高地, 等. 基于RWEQ的宁夏草地防风固沙服务评估[J]. 资源科学, 2019, 41(5): 980-991.
[17] [Wang Yangyang, Xiao Yu, Xie Gaodi, et al. Sand-fixing function of the grassland ecosystem in Ningxia based on the revised wind erosion model[J]. Resources Science, 2019, 41(5): 980-991.]
[18] 徐洁, 肖玉, 谢高地, 等. 防风固沙型重点生态功能区防风固沙服务的评估与受益区识别[J]. 生态学报, 2019, 39(16): 5857-5873.
[18] [Xu Jie, Xiao Yu, Xie Gaodi, et al. Assessment of wind erosion prevention service and its beneficiary areas identification of national key ecological function zone of windbreak and sand fixation type in China[J]. Acta Ecologica Sinica, 2019, 39(16): 5857-5873.]
[19] 王蕾, 赵霞, 张琛悦, 等. 基于RWEQ模型的茫崖市防风固沙功能评估及敏感地类识别[J]. 水土保持研究, 2023, 30(1): 144-153.
[19] [Wang Lei, Zhao Xia, Zhang Chenyue, et al. Assessment of windbreak and sand fixation function and identification of sensitive land use types in Mangai City based on RWEQ model[J]. Research of Soil and Water Conservation, 2023, 30(1): 144-153.]
[20] 黄孟冬, 肖玉, 秦克玉, 等. 1980—2018年浑善达克地区防风固沙服务时空变化及其驱动因素[J]. 生态学报, 2022, 42(18): 7612-7629.
[20] [Huang Mengdong, Xiao Yu, Qin Keyu, et al. Spatiotemporal dynamics and drivers of wind erosion prevention service in Otindag from 1980 to 2018[J]. Acta Ecologica Sinica, 2022, 42(18): 7612-7629.]
[21] 金银丽, 周冬梅, 周凡, 等. 疏勒河流域生态安全网络构建及优化[J]. 应用生态学报, 2023, 34(4): 1063-1072.
[21] [Jin Yinli, Zhou Dongmei, Zhou Fan, et al. Construction and optimization of ecological security network in the Shule River Basin, China[J]. Chinese Journal of Applied Ecology, 2023, 34(4): 1063-1072.]
[22] 孙旭伟, 李森, 王亚晖, 等. 1975—2020年疏勒河流域绿洲时空变化研究[J]. 生态学报, 2022, 42(22): 9111-9120.
[22] [Sun Xuwei, Li Sen, Wang Yahui, et al. Spatiotemporal change of oasis in Shule River Basin during 1975—2020[J]. Acta Ecologica Sinica, 2022, 42(22): 9111-9120.]
[23] Che T, Li X, Jin R, et al. Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 2008, 49: 145-154.
[24] 巩国丽. 中国北方土壤风蚀时空变化特征及影响因素分析[D]. 北京: 中国科学院大学, 2014.
[24] [Gong Guoli. Analysis of spatiotemporal changes and influencing factors of soil wind erosion in northern China[D]. Beijing: University of Chinese Academy of Sciences, 2014.]
[25] 江凌, 肖燚, 饶恩明, 等. 内蒙古土地利用变化对生态系统防风固沙功能的影响[J]. 生态学报, 2016, 36(12): 3734-3747.
[25] [Jiang Ling, Xiao Yi, Rao Enming, et al. Effects of land use and cover change (LUCC) on ecosystem sand fixing service in Inner Mongolia[J]. Acta Ecologica Sinica, 2016, 36(12): 3734-3747.]
[26] 王炳瑞. 1990—2015年内蒙古中西部地区风力侵蚀和固沙服务评估[D]. 兰州: 兰州大学, 2022.
[26] [Wang Bingrui. Assessment of wind erosion and sand-stabilization services in central and western Inner Mongolia from 1990 to 2015[D]. Lanzhou: Lanzhou University, 2022.]
[27] 申陆, 田美荣, 高吉喜, 等. 浑善达克沙漠化防治生态功能区防风固沙功能的时空变化及驱动力[J]. 应用生态学报, 2016, 27(1): 73-82.
[27] [Shen Lu, Tian Meirong, Gao Jixi, et al. Spatio-temporal change of sand-fixing function and its driving forces in desertification control ecological function area of Hunshandake, China[J]. Chinese Journal of Applied Ecology, 2016, 27(1): 73-82.]
[28] 易秀, 李侠. 西北地区土壤资源特征及其开发利用与保护[J]. 地球科学与环境学报, 2004(4): 85-89.
[28] [Yi Xiu, Li Xia. Characteristics of soil resources and development and protection in the northwest region[J]. Journal of Earth Sciences and Environment, 2004(4): 85-89.]
[29] 苏木亚, 郭崇慧. 基于主成分分析的单变量时间序列聚类方法[J]. 运筹与管理, 2011, 20(6): 66-72.
[29] [Su Muya, Guo Chonghui. Univariate time series clustering method based on principal component analysis[J]. Operations Research and Management Science, 2011, 20(6): 66-72.]
[30] 郑续, 魏乐民, 郭建军, 等. 基于地理探测器的干旱区内陆河流域产水量驱动力分析——以疏勒河流域为例[J]. 干旱区地理, 2020, 43(6): 1477-1485.
[30] [Zheng Xu, Wei Lemin, Guo Jianjun. Driving force analysis of water yield in inland river basins of arid areas based on geo-detectors: A case of the Shule River[J]. Arid Land Geography, 2020, 43(6): 1477-1485.]
[31] 黄麟, 祝萍, 肖桐, 等. 近35年三北防护林体系建设工程的防风固沙效应[J]. 地理科学, 2018, 38(4): 600-609.
[31] [Huang Lin, Zhu Ping, Xiao Tong, et al. The sand fixation effects of three-north shelter forest program in recent 35 years[J]. Scientia Geographica Sinica, 2018, 38(4): 600-609.]
[32] Li J, Ma X, Zhang C. Predicting the spatiotemporal variation in soil wind erosion across Central Asia in response to climate change in the 21st century[J]. Science of the Total Environment, 2020, 709: 136060, doi: 10.1016/j.scitotenv.2019.136060.
[33] Zhang H Y, Fan J W, Cao W, et al. Response of wind erosion dynamics to climate change and human activity in Inner Mongolia, China during 1990 to 2015[J]. Science of the Total Environment, 2018, 639: 1038-1050.
[34] Bergametti G, Rajot J L, Pierre C, et al. How long does precipitation inhibit wind erosion in the Sahel?[J]. Geophysical Research Letters, 2016, 43(12): 6643-6649.
[35] Wu X G, Fan J Q, Sun L, et al. Wind erosion and its ecological effects on soil in the northern piedmont of the Yinshan Mountains[J]. Ecological Indicators, 2021, 128(1): 107825, doi: 10.1016/j.ecolind.2021.107825.
[36] Li D J, Xu D Y, Wang Z Y, et al. The dynamics of sand-stabilization services in Inner Mongolia, China from 1981 to 2010 and its relationship with climate change and human activities[J]. Ecological Indicators, 2018, 88: 351-360.
[37] ?ehá?ek D, Khel T, Ku?era J, et al. Effect of windbreaks on wind speed reduction and soil protection against wind erosion[J]. Soil and Water Research, 2017, 12(2): 128-135.
[38] 彭婉月, 王兆云, 李海东, 等. 黑河中下游防风固沙功能时空变化及影响因子分析[J]. 环境科学研究, 2020, 33(12): 2734-2744.
[38] [Peng Wanyue, Wang Zhaoyun, Li Haidong, et al. Spatio-temporal changes of sand-fixing function and its driving forces in the middle and lower reaches of Heihe River Basin[J]. Research of Environmental Sciences, 2020, 33(12): 2734-2744.]
[39] 邢丽珠, 张方敏, 邢开成, 等. 基于RWEQ模型的内蒙古巴彦淖尔市土壤风蚀变化特征及归因分析[J]. 中国沙漠, 2021, 41(5): 111-119.
[39] [Xing Lizhu, Zhang Fangmin, Xing Kaicheng, et al. Change of soil wind erosion and attribution in Bayannur, Inner Mongolia based on the revised wind erosion equation[J]. Journal of Desert Research, 2021, 41(5): 111-119.]
[40] Buschiazzo D E, Zobeck T M. Validation of WEQ, RWEQ and WEPS wind erosion for different arable land management systems in the Argentinean Pampas[J]. Earth Surface Processes and Landforms, 2008, 33(12): 1839-1850.
文章导航

/