气候与水文

中亚5月土壤湿度异常对6月降水的影响

  • 刘文丽 ,
  • 陈樟 ,
  • 赵勇 ,
  • 梁雨欣
展开
  • 成都信息工程大学大气科学学院,四川 成都 610225
刘文丽(1998-),女,硕士研究生,主要从事陆气相互作用研究. E-mail: liuwl_lily@163.com

收稿日期: 2023-06-14

  修回日期: 2023-07-18

  网络出版日期: 2024-01-26

基金资助

国家自然科学基金(41875102);成都信息工程大学科研基金项目(KYTZ201726)

Influences of soil moisture anomalies in May on June precipitation in Central Asia

  • Wenli LIU ,
  • Zhang CHEN ,
  • Yong ZHAO ,
  • Yuxin LIANG
Expand
  • School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China

Received date: 2023-06-14

  Revised date: 2023-07-18

  Online published: 2024-01-26

摘要

利用1980—2019年欧洲中期天气预报中心提供的ERA5月平均再分析数据和全球降水气候中心(GPCC)提供的逐月降水数据,分析中亚前期5月土壤湿度异常对后期6月局地降水变化的影响。结果表明:(1) 中亚春季逐月土壤湿度总体表现为北部和中部高、西南和东南低的空间分布特征;3—4月土壤湿度年际变化的大值区主要位于中亚西南部;中亚北部土壤湿度在3月呈显著增加趋势,4—5月显著减少;中亚西南部3月土壤湿度显著减少。(2) 中亚中部地区5月土壤湿度异常与当地6月的降水变化呈显著正相关,通过95%信度检验。5月土壤湿度正异常可以持续到6月,导致6月局地蒸发量增加,大气可降水量增多;同时地表向上潜热通量增加、感热通量减少、波恩比减小,进而导致大气边界层降低、低层大气湿熵增加、对流不稳定能量增大,有利于降水天气的发生。(3) 前冬Niño3.4指数与中亚中部地区次年5月土壤湿度和6月降水异常都呈显著正相关,5月土壤湿度是厄尔尼诺-南方涛动(ENSO)影响次年6月中亚中部地区降水异常的重要媒介,但土壤湿度可独立于ENSO影响6月降水。

关键词: 中亚; 土壤湿度; 降水; 蒸发; ENSO

本文引用格式

刘文丽 , 陈樟 , 赵勇 , 梁雨欣 . 中亚5月土壤湿度异常对6月降水的影响[J]. 干旱区地理, 2024 , 47(1) : 38 -47 . DOI: 10.12118/j.issn.1000-6060.2023.287

Abstract

Using RA5 monthly reanalysis data from the European Centre for Medium-Range Weather Forecasts and monthly precipitation records from the Global Precipitation Climatology Centre spanning 1980 to 2019, this study examines the influence of May soil moisture anomalies on subsequent June precipitation variability in Central Asia. The findings unveil the following key insights: (1) The spatial distribution of springtime soil moisture exhibited elevated levels in Central Asia’s northern and central regions and lower levels in the southwest and southeast. Maximum standard deviations occurred in southwest Central Asia during March and April. In the north of Central Asia, soil moisture experiences a noteworthy increasing trend in March but displays a declining trend from April to May. Conversely, southwest Central Asia witnessed substantial decreases in March. (2) June precipitation in Central Asia positively correlates with local soil moisture in May. Persistent wet soil moisture anomalies from May to June contribute to increased atmospheric precipitable water, modifying regional evaporation patterns in June. Heightened evaporation leads to increased latent heat flux and reduced sensible heat flux. A small Bowen ratio indicates a relatively shallow boundary layer that promotes low-layer moist entropy and a heightened potential for convective activity. Consequently, June rainfall over the central regions of Central Asia increased. (3) A notable positive correlation exists between soil moisture in May and precipitation in June over middle Central Asia and the preceding winter Niño3.4 index. The influence of the preceding El Nino-Southern Oscillation (ENSO) on June precipitation in middle Central Asia is mediated by May soil moisture. Nonetheless, soil moisture anomalies can independently impact the variability of June precipitation, separate from the influence of ENSO.

参考文献

[1] Li Z, Chen Y N, Li W H, et al. Potential impacts of climate change on vegetation dynamics in Central Asia[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(24): 12345-12356.
[2] Wolff C, Plessen B, Dudashvilli A S, et al. Precipitation evolution of Central Asia during the last 5000 years[J]. The Holocene, 2017, 27(1): 142-154.
[3] Jia J, Liu H, Gao F Y, et al. Variations in the westerlies in Central Asia since 16 ka recorded by a loess section from the Tien Shan Mountains[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 504: 156-161.
[4] Bothe O, Fraedrich K, Zhu X H. Precipitation climate of Central Asia and the large-scale atmospheric circulation[J]. Theoretical and Applied Climatology, 2012, 108(3-4): 1-10.
[5] Zhang J, Chen Z H, Chen H S, et al. North Atlantic multidecadal variability enhancing decadal extratropical extremes in Boreal late summer in the early twenty-first century[J]. Journal of Climate, 2020, 33(14): 6047-6064.
[6] Mariotti A. How ENSO impacts precipitation in southwest Central Asia[J]. Geophysical Research Letters, 2007, 34(16): L16706, doi: 10.1029/2007GL030078.
[7] Hu Z Y, Zhou Q M, Chen X, et al. Variations and changes of annual precipitation in Central Asia over the last century[J]. International Journal of Climatology, 2017, 37(Suppl. 1): 157-170.
[8] Chen Z, Wu R G, Zhao Y, et al. Different responses of Central Asian precipitation to strong and weak El Ni?o events[J]. Journal of Climate, 2022, 35(5): 1497-1514.
[9] Zhou Y, Huang A N, Zhao Y, et al. Influence of the sea surface temperature anomaly over the Indian Ocean in March on the summer rainfall in Xinjiang[J]. Theoretical and Applied Climatology, 2015, 119(3-4): 781-789.
[10] Huang W, Feng S, Chen J H, et al. Physical mechanisms of summer precipitation variations in the Tarim Basin in northwestern China[J]. Journal of Climate, 2015, 28(9): 3579-3591.
[11] Wei W, Zhang R H, Wen M, et al. Relationship between the Asian westerly jet stream and summer rainfall over Central Asia and north China: Roles of the Indian monsoon and the South Asian High[J]. Journal of Climate, 2017, 30(2): 537-552.
[12] 任国强, 赵勇. 副热带西风急流与中亚夏季降水的关系[J]. 高原气象, 2022, 41(6): 1425-1434.
[12] [Ren Guoqiang, Zhao Yong. Relationship between the subtropical westerly jet and summer rainfall over Central Asia from 1961 to 2016[J]. Plateau Meteorology, 2022, 41(6): 1425-1434.]
[13] Walker J, Rowntree P R. The effect of soil moisture on circulation and rainfall in a tropical model[J]. Quarterly Journal of the Royal Meteorological Society, 1977, 103(435): 29-46.
[14] Koster R D, Suarez M J, Higgins W, et al. Observational evidence that soil moisture variations affect precipitation[J]. Geophysical Research Letters, 2003, 30(5): 45-41.
[15] Martius O, Wehrli K, Rohrer M. Local and remote atmospheric responses to soil moisture anomalies in Australia[J]. Journal of Climate, 2021, 34(22): 9115-9131.
[16] 丁旭, 赖欣, 范广洲. 青藏高原春季土壤湿度异常与我国夏季降水的联系[J]. 高原气象, 2022, 41(1): 24-34.
[16] [Ding Xu, Lai Xin, Fan Guangzhou. Impacts of spring soil moisture anomalies in Qinghai-Xizang Plateau on the summer precipitation variability in China[J]. Plateau Meteorology, 2022, 41(1): 24-34.]
[17] Liu L, Zhang R H, Zuo Z Y. Effect of spring precipitation on summer precipitation in eastern China: Role of soil moisture[J]. Journal of Climate, 2017, 30(22): 9183-9194.
[18] 蒋靖海, 王澄海. 北半球季节性冻融区与北半球夏季降水关系的研究[J]. 冰川冻土, 2020, 42(1): 53-61.
[18] [Jiang Jinghai, Wang Chenghai. Study on the relationship between seasonal freezing-thawing areas and summer precipitation in the northern Hemisphere[J]. Journal of Glaciology and Geocryology, 2020, 42(1): 53-61.]
[19] Meng L, Long D, Quiring S M, et al. Statistical analysis of the relationship between spring soil moisture and summer precipitation in east China[J]. International Journal of Climatology, 2014, 34(5): 1511-1523.
[20] Yang K, Wang C H. Seasonal persistence of soil moisture anomalies related to freeze-thaw over the Tibetan Plateau and prediction signal of summer precipitation in eastern China[J]. Climate Dynamics, 2019, 53(3-4): 2411-2424.
[21] Sang Y H, Ren H L, Deng Y, et al. Impacts of late-spring north Eurasian soil moisture variation on summer rainfall anomalies in northern East Asia[J]. Climate Dynamics, 2022, 58(5-6): 1495-1508.
[22] Gao C J, Li G, Chen H S, et al. Interdecadal change in the effect of spring soil moisture over the Indo-China Peninsula on the following summer precipitation over the Yangtze River Basin[J]. Journal of Climate, 2020, 33(16): 7063-7082.
[23] KanthaRao B, Rakesh V. Observational evidence for the relationship between spring soil moisture and June rainfall over the Indian region[J]. Theoretical and Applied Climatology, 2018, 132(3-4): 835-849.
[24] Graf M, Arnault J, Fersch B, et al. Is the soil moisture precipitation feedback enhanced by heterogeneity and dry soils? A comparative study[J]. Hydrological Processes, 2021, 35(9): 14332, doi: 10.1002/hyp.14332.
[25] Yao J Q, Chen Y N, Zhao Y, et al. Climatic and associated atmospheric water cycle changes over the Xinjiang, China[J]. Journal of Hydrology, 2020, 585(2): 124823, doi: 10.1016/j.jhydrol.2020.124823.
[26] Peng D D, Zhou T J, Zhang L X. Moisture sources associated with precipitation during dry and wet seasons over Central Asia[J]. Journal of Climate, 2020, 33(24): 10755-10771.
[27] 高洁, 赵勇, 姚俊强, 等. 气候变化背景下中亚干旱区大气水分循环要素时空演变[J]. 干旱区研究, 2022, 39(5): 1371-1384.
[27] [Gao Jie, Zhao Yong, Yao Junqiang, et al. Spatiotemporal evolution of atmospheric water cycle factors in arid regions of Central Asia under climate change[J]. Arid Zone Research, 2022, 39(5): 1371-1384.]
[28] Yu T, Jiapaer G, Bao A M, et al. Evaluating surface soil moisture characteristics and the performance of remote sensing and analytical products in Central Asia[J]. Journal of Hydrology, 2023, 617(2): 128921, doi: 10.1016/j.jhydrol.2022.128921.
[29] Mu?oz-Sabater J, Dutra E, Agusti-Panareda A, et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications[J]. Earth System Science Data, 2021, 13(9): 4349-4383.
[30] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999-2049.
[31] Schneider U, Finger P, Meyer-Christoffer A, et al. Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC)[J]. Atmosphere, 2017, 8(3): 52-52.
[32] Dirmeyer P A, Schlosser C A, Brubaker K L. Precipitation, recycling, and land memory: An integrated analysis[J]. Journal of Hydrometeorology, 2009, 10(1): 278-288.
[33] 左志燕. 我国东部土壤湿度异常对东亚夏季风的影响[D]. 北京: 中国气象科学研究院, 2007.
[33] [Zuo Zhiyan. Influence of soil moisture anomaly in east China on the East Asian summer monsoon[D]. Beijing: Chinese Academy of Meteorological Sciences, 2007.]
[34] He K J, Liu G, Wu R G, et al. Effect of preceding soil moisture-snow cover anomalies around Turan Plain on June precipitation over the southern Yangtze River Valley[J]. Atmospheric Research, 2021, 264(2): 105853, doi: 10.1016/j.atmosres.2021.105853.
[35] Solander K C, Newman B D, Barnard H R, et al. The pantropical response of soil moisture to El Ni?o[J]. Hydrology and Earth System Sciences, 2020, 24(5): 2303-2322.
[36] Miralles D G, Gash J H, Parinussa R M, et al. El Ni?o-La Ni?a cycle and recent trends in continental evaporation[J]. Nature Climate Change, 2014, 4(2): 122-126.
[37] Zhao Y, Zhang H Q. Impacts of SST warming in tropical Indian Ocean on CMIP5 model-projected summer rainfall changes over Central Asia[J]. Climate Dynamics, 2016, 46: 3223-3238.
[38] Ma Q R, Zhang J, Game A T, et al. Spatiotemporal variability of summer precipitation and precipitation extremes and associated large-scale mechanisms in Central Asia during 1979—2018[J]. Journal of Hydrology X, 2020, 8: 100061, doi: 10.1016/j.hydroa.2020.100061.
[39] 卢星, 赵勇. 北非副热带高压与中亚夏季降水的关系[J]. 干旱区地理, 2022, 45(4): 1050-1060.
[39] [Lu Xing, Zhao Yong. Relationships between North Africa subtropical high and summer precipitation over Central Asia[J]. Arid Land Geography, 2022, 45(4): 1050-1060.]
文章导航

/