气候与水文

基于Budyko模型的巴音布鲁克山区暖季人工增水作业效果分析

  • 刁鹏 ,
  • 李刚 ,
  • 袁先雷 ,
  • 温春
展开
  • 巴音郭楞蒙古自治州气象局,新疆 库尔勒 841000
刁鹏(1990-),男,本科,工程师,主要从事人工影响天气研究. E-mail: 375648190@qq.com

收稿日期: 2023-01-11

  修回日期: 2023-02-10

  网络出版日期: 2024-01-05

基金资助

新疆气象科技创新发展基金项目(QN202111)

Effect of artificial precipitation enhancement in Bayanbulak mountain area in warm seasons based on Budyko model

  • Peng DIAO ,
  • Gang LI ,
  • Xianlei YUAN ,
  • Chun WEN
Expand
  • Meteorological Bureau of Bayingol Mongolian Autonomous Prefectrue, Korla 841000, Xinjiang, China

Received date: 2023-01-11

  Revised date: 2023-02-10

  Online published: 2024-01-05

摘要

降水量作为人工增水效果分析常用指标,受地理、经济、技术等影响,往往可研究分析的代表性数据站点数量较少,一定程度上对区域性效果检验精度造成影响。为此,基于1973—2018年的5—9月巴音布鲁克气象站逐日气象资料和开都河上游大山口水文站逐月径流量资料,利用Budyko模型构建径流模拟方程,并运用序列试验检验、不成对秩和检验以及t检验等统计方法,以降水量、径流量等作为指标,探讨该区域暖季不同统计指标对人工增水作业效果检验的差异性。结果表明:(1) 基于Budyko模型得出的径流量与降水量不但相关性极高(R2=0.9971,P<0.001),而且速率与趋势变化一致,表明模拟径流量不仅能准确反映降水量变化趋势,还能代表降水对径流的影响量。(2) 将实测径流量、模拟径流量和降水量作为统计变量,利用不对称秩和检验及t检验,分析得出人工增水作业后,降水量与径流量增加显著(P<0.02)。(3) 降水量作为统计指标检验功效最好,人工增水作业开展后只需增值11.59%就能显著检验出效果,而模拟径流量相比实测径流量的检验功效值低3.72%,说明检验功效有提升。(4) 选取统计显著性水平90%的置信区间,得出作业期(1994—2018年)比历史期(1973—1993年)的暖季月均降水量绝对增加值为5.38 mm,相对增率为12.05%;模拟径流量绝对增加值为4.53 m3·s-1,相对增率为14.7%;实测径流量绝对增加值为28.48 m3·s-1,相对增率为18.48%,表明巴音布鲁克山区暖季人工增水作业效果显著。

本文引用格式

刁鹏 , 李刚 , 袁先雷 , 温春 . 基于Budyko模型的巴音布鲁克山区暖季人工增水作业效果分析[J]. 干旱区地理, 2023 , 46(12) : 1963 -1972 . DOI: 10.12118/j.issn.1000-6060.2023.023

Abstract

Although precipitation serves as a common statistical indicator, its utility is limited by the availability of representative station data, which is affected by geographical, economic, technical, and other effects. Such limitations can introduce inaccuracies in the assessment of the effectiveness of artificial precipitation enhancement. To address these challenges, this study focused on daily meteorological data from the Bayanbulak meteorological station and monthly runoff data from the Dashankou hydrological station in Xinjiang, China, from May to September in 1973—2018. This study involved building a runoff simulation equation using the Budyko model. To objectively and quantitatively analyze the impact of artificial precipitation enhancement in the Bayanbulak mountain area during warm seasons, sequence tests, unpaired rank sum tests, and t-tests were used. The results show the following: (1) The use of the Budyko model for building simulated runoff not only synchronized with the changing trends and growth rates of precipitation but also demonstrated a highly significant correlation (R2=0.9971, P<0.001). This shows that the simulated runoff not only captured the overall precipitation trends but also quantified the impact of precipitation on runoff. (2) Utilizing an unpaired rank sum test and t-test, it was found that both precipitation and runoff significantly increased (P<0.02) after artificial precipitation enhancement when considering measured runoff, simulated runoff, and precipitation as statistical variables. (3) The best statistical indicator for assessing the impact of artificial precipitation enhancement was precipitation, accounting for only 11.59% of the added value to statistically test the effect. Compared with the measured runoff, the test efficiency value of the simulated runoff decreased by 3.72%, indicating that the test efficiency was improved. (4) With a selected significance level of a 90% confidence interval, the absolute increase in precipitation was 5.38 mm, representing a relative increase rate of 12.05%. The absolute increase in the simulated runoff was 4.53 m3·s-1, indicating a relative increase rate of 14.70%. The absolute increase in the measured runoff was 28.48 m3·s-1, corresponding to a relative increase rate of 18.48%. This indicates the important impact of artificial precipitation enhancement during the warm seasons in the operation period (1994—2018) compared with the historical period (1973—1993) in the Bayanbulak mountain area.

参考文献

[1] Chen H G, Zhang Y H P. New biorefineries and sustainable agriculture: Increased food, biofuels, and ecosystem security[J]. Renewable & Sustainable Energy Reviews, 2015, 47: 117-132.
[2] 段婧, 楼小凤, 汪会, 等. 人工影响天气用碘化银催化剂对区域环境影响的研究进展[J]. 气象, 2020, 46(2): 257-268.
[2] [Duan Jing, Lou Xiaofeng, Wang Hui, et al. Research progress on impact of AgI in weather modification operations on environment in related areas[J]. Meteorological Monthly, 2020, 46(2): 257-268.]
[3] 段婧, 楼小凤, 卢广献, 等. 国际人工影响天气技术新进展[J]. 气象, 2017, 43(12): 1562-1571.
[3] [Duan Jing, Lou Xiaofeng, Lu Guangxian, et al. International recent progress in weather modification technology[J]. Meteorological Monthly, 2017, 43(12): 1562-1571.]
[4] 洪延超, 雷恒池. 云降水物理和人工影响天气研究进展和思考[J]. 气候与环境研究, 2012, 17(6): 951-967.
[4] [Hong Yanchao, Lei Hengchi. Research advance and thinking of the cloud precipitation physics and weather modification[J]. Climatic and Environmental Research, 2012, 17(6): 951-967.]
[5] 郭学良, 付丹红, 胡朝霞. 云降水物理与人工影响天气研究进展(2008—2012年)[J]. 大气科学, 2013, 37(2): 351-363.
[5] [Guo Xueliang, Fu Danhong, Hu Zhaoxia. Progress in cloud physics, precipitation, and weather modification during 2008—2012[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(2): 351-363.]
[6] 罗光明, 侍克斌, 张宏俊. 新疆水资源利用和经济增长之间的关系[J]. 干旱区地理, 2009, 32(4): 566-570.
[6] [Luo Guangming, Shi Kebin, Zhang Hongjun. Relationship between water resource utilization and economic growth of Xinjiang[J]. Arid Land Geography, 2009, 32(4): 566-570.]
[7] 白景锋, 张海军. 中国水—能源—粮食压力时空变动及驱动力分析[J]. 地理科学, 2018, 38(10): 1653-1660.
[7] [Bai Jingfeng, Zhang Haijun. Spatio-temporal variation and driving force of water-energy-food pressure in China[J]. Scientia Geographica Sinica, 2018, 38(10): 1653-1660.]
[8] 苏宏超, 沈永平, 韩萍, 等. 新疆降水特征及其对水资源和生态环境的影响[J]. 冰川冻土, 2007, 29(3): 343-350.
[8] [Su Hongchao, Shen Yongping, Han Ping, et al. Precipitation and its impact on water resources and ecological environment in Xinjiang region[J]. Journal of Glaciology and Geocryology, 2007, 29(3): 343-350.]
[9] 邓铭江, 李湘权, 龙爱华, 等. 支撑新疆经济社会跨越式发展的水资源供需结构调控分析[J]. 干旱区地理, 2011, 34(3): 379-390.
[9] [Deng Mingjiang, Li Xiangquan, Long Aihua, et al. Regulation of supply and demand structure of the water resources and support economic and social leap-forward development of protection measures[J]. Arid Land Geography, 2011, 34(3): 379-390.]
[10] 张强, 孙昭萱, 陈丽华, 等. 祁连山空中云水资源开发利用研究综述[J]. 干旱区地理, 2009, 32(3): 381-390.
[10] [Zhang Qiang, Sun Zhaoxuan, Chen Lihua, et al. Reviews on studies of exploitation and utilization of cloud-water resource in the Qilian Mountains region[J]. Arid Land Geography, 2009, 32(3): 381-390.]
[11] 章澄昌. 人工影响天气概论[M]. 北京: 气象出版社, 1992: 252-253.
[11] [Zhang Chengchang. Weather modification generality[M]. Beijing: Meteorological Press, 1992: 252-253.]
[12] Breed D, Rasmussen R, Weeks C, et al. Evaluating winter orographic cloud seeding: Design of the Wyoming weather modification pilot project (WWMPP)[J]. Journal of Applied Meteorology and Climatology, 2014, 53(2): 282-299.
[13] 曾光平, 方仕珍, 肖锋. 1975—1986年古田水库人工降雨效果总分析[J]. 大气科学, 1991, 15(4): 97-108.
[13] [Zeng Guangping, Fang Shizhen, Xiao Feng. The total analysis of the effect of artificial rainfall in Gutian Reservoir Area, Fujian (1975—1986)[J]. Chinese Journal of Atmospheric Sciences, 1991, 15(4): 97-108.]
[14] 刘平, 黄彦彬, 王维佳, 等. 基于雨滴谱的增雨作业微物理特征分析[J]. 气象科技, 2021, 49(2): 244-252.
[14] [Liu Ping, Huang Yanbin, Wang Weijia, et al. Microphysical characteristics of precipitation enhancement operations based on raindrop spectrum[J]. Meteorological Science and Technology, 2021, 49(2): 244-252.]
[15] 李斌, 郑博华, 兰文杰, 等. 克拉玛依夏秋季地面火箭增水作业效果的区域回归分析[J]. 干旱区地理, 2021, 44(4): 953-961.
[15] [Li Bin, Zheng Bohua, Lan Wenjie, et al. Regression analysis of the rainfall enhancement effect by rocket seeding at summer and autumn in Karamay[J]. Arid Land Geography, 2021, 44(4): 953-961.]
[16] 陈宝君, 宋娟. 人工增雨降温机理的数值模拟研究:对流云个例试验[J]. 气象科学, 2006, 26(1): 47-52.
[16] [Chen Baojun, Song Juan. Modeling study of AgI seeding of convective cloud for decreasing air temperature[J]. Scientia Meteorologica Sinica, 2006, 26(1): 47-52.]
[17] 李倩文, 左其亭, 李东林, 等. 新疆水资源开发利用的空间均衡分析[J]. 水资源保护, 2021, 37(2): 28-33.
[17] [Li Qianwen, Zuo Qiting, Li Donglin, et al. Spatial equilibrium analysis of water resources development and utilization in Xinjiang[J]. Water Resources Protection, 2021, 37(2): 28-33.]
[18] 张正勇, 刘琳, 唐湘玲. 近50年我国天山山区降水变化区域差异及突变特征[J]. 干旱区资源与环境, 2013, 27(7): 85-90.
[18] [Zhang Zhengyong, Liu Lin, Tang Xiangling. The regional difference and catastrophe of precipitation change in Tianshan Mountains in recent 50 years[J]. Journal of Arid Land Resources and Environment, 2013, 27(7): 85-90.]
[19] 叶家东, 范培芬. 人工影响天气的统计数学方法[M]. 北京科学出版社, 1982.
[19] [Ye Jiadong, Fan Peifen. Statistical mathematical method of weather modification[M]. Beijing: Science Press, 1982.]
[20] 高子毅, 刘广忠. 克拉玛依山区人工增水效果的再评价[J]. 新疆气象, 2000, 23(1): 23-26.
[20] [Gao Ziyi, Liu Guangzhong. New evaluation of effect of orographic cloud seeding in Karamay[J]. Xinjiang Meteorology, 2000, 23(1): 23-26.]
[21] 施文全, 王红岩, 黄显金, 等. 吐鲁番山区人工增水作业效果的统计分析[J]. 新疆气象, 2002, 25(6): 28-30.
[21] [Shi Wenquan, Wang Hongyan, Huang Xianjin, et al. Statistical analysis of precipitation stimulation effects in Turpan mountain area[J]. Xinjiang Meteorology, 2002, 25(6): 28-30.]
[22] 高子毅, 张建新, 廖飞佳, 等. 新疆天山山区人工增雨试验效果评价[J]. 高原气象, 2005, 24(5): 734-740.
[22] [Gao Ziyi, Zhang Jianxin, Liao Feijia, et al. The effect evaluation for precipitation enhancement experiment in Tianshan Mountains of Xinjiang[J]. Plateau Meteorology, 2005, 24(5): 734-740.]
[23] 姚亚楠, 徐俊荣, 郭玲鹏, 等. 气温与降水形态关系研究——以开都河流域为例[J]. 干旱区研究, 2015, 32(1): 94-101.
[23] [Yao Ya’nan, Xu Junrong, Guo Lingpeng, et al. Relationships between temperature and precipitation forms based on the data from meteorological stations: A case study in the Kaidu River Basin[J]. Arid Zone Research, 2015, 32(1): 94-101.]
[24] 刘濛濛, 隆永兰. 巴音布鲁克近58 a气候变化特征分析[J]. 干旱区地理, 2019, 42(4): 715-723.
[24] [Liu Mengmeng, Long Yonglan. Climatic variation characteristics in Bayinbuluk during the past 58 years[J]. Arid Land Geography, 2019, 42(4): 715-723.]
[25] 周雪英, 段均泽, 李晓川, 等. 近52年巴音布鲁克山区日降水变化趋势与突变特征分析[J]. 沙漠与绿洲气象, 2013, 7(5): 19-24.
[25] [Zhou Xueying, Duan Junze, Li Xiaochuan, et al. Analysis on tendency and abrupt change of daily precipitation in recent 52 years in Bayinbuluk mountains[J]. Desert and Oasis Meteorology, 2013, 7(5): 19-24.]
[26] 王维霞, 王秀君, 姜逢清, 等. 近30 a来开都河上游径流量变化的气候响应[J]. 干旱区研究, 2013, 30(4): 743-748.
[26] [Wang Weixia, Wang Xiujun, Jiang Fengqing, et al. Response of runoff volume to climate change in the Kaidu River Basin in recent 30 years[J]. Arid Land Geography, 2013, 30(4): 743-748.]
[27] Chen Z S, Chen Y N, Li B F. Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China[J]. Theoretical and Applied Climatology, 2013, 111(3-4): 537-545.
[28] 姚俊强, 杨青, 韩雪云, 等. 气候变化对天山山区高寒盆地水资源变化的影响——以巴音布鲁克盆地为例[J]. 干旱区研究, 2016, 33(6): 1167-1173.
[28] [Yao Junqiang, Yang Qing, Han Xueyun, et al. Impact of climate change on surface water resources in alpine basin in the Tianshan Mountains: A case study in the Bayanbuluk Basin[J]. Arid Zone Research, 2016, 33(6): 1167-1173.]
[29] 中国气象局科技教育司. 人工影响天气岗位培训教材[M]. 北京: 气象出版社, 2003.
[29] Science and Technology Education Department of China Meteorological Administration. On-the-job training materials of weather modification[M]. Beijing: Meteorological Press, 2003.]
[30] 陈亚宁. 中国西北干旱区水资源研究[M]. 北京: 科学出版社, 2014.
[30] [Chen Yaning. Research on water resources in arid area of northwest China[M]. Beijing: Science Press, 2014.]
文章导航

/