生物与土壤

乌鲁木齐市核心城区绿地土壤重金属累积特征及生态风险

  • 梁樑 ,
  • 郭晓淞 ,
  • 陈汉杰 ,
  • 徐皓帆 ,
  • 周衍波 ,
  • 谢邵文 ,
  • 杨芬 ,
  • 韦朝阳
展开
  • 1.佛山科学技术学院,广东 佛山 528000
    2.岭南现代农业科学与技术广东省实验室,广东 广州 510642
    3.广东省科学院生态环境与土壤研究所/华南土壤污染控制与修复国家地方联合工程研究中心/广东省农业环境综合治理重点实验室,广东 广州 510650
    4.中国科学院地理科学与资源研究所/陆地表层格局与模拟重点实验室,北京 100101
梁樑(1997-),男,本科在读,主要从事土壤重金属环境风险评价研究. E-mail: liangliang18y@163.com

收稿日期: 2023-02-15

  修回日期: 2023-07-21

  网络出版日期: 2023-12-05

基金资助

广东省基础与应用基础研究基金粤佛联合基金项目(2022A1515110930);广东省基础与应用基础研究基金粤佛联合基金项目(2022A1515110718);岭南现代农业科学与技术广东省实验室科研项目(NZ2021026);第三次新疆综合科学考察天山北坡土地开发调查与生态环境效应评估项目(2022xjkk0902);佛山市生态固碳工程技术研究中心项目资助

Accumulation characteristics and ecological risks of heavy metals in green land soils in core urban area of Urumqi City

  • Liang LIANG ,
  • Xiaosong GUO ,
  • Hanjie CHEN ,
  • Haofan XU ,
  • Yanbo ZHOU ,
  • Shaowen XIE ,
  • Fen YANG ,
  • Chaoyang WEI
Expand
  • 1. School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, Guangdong, China
    2. Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China
    3. National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China/Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management/Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangzhou 510650, Guangdong, China
    4. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Received date: 2023-02-15

  Revised date: 2023-07-21

  Online published: 2023-12-05

摘要

随着城市扩张和工业化进程的加快,我国大型城市核心城区土壤已遭受不同程度的重金属污染。以乌鲁木齐市核心城区典型城市公园绿地和交通枢纽绿地为对象,系统探究土壤中6种重金属(Cd、Cr、Cu、Pb、Zn和Ni)的累积特征和生态风险。结果表明:(1) 交通枢纽绿地土壤重金属含量均高于城市公园绿地土壤。相较于乌鲁木齐市土壤背景值,城市公园绿地土壤重金属为轻度污染,而交通枢纽绿地土壤重金属为中度污染。(2) 不同行政区城市公园绿地土壤重金属综合污染指数为:头屯河区(2.85)>水磨沟区(2.13)>天山区(1.91)>新市区(1.85)>米东区(1.23),而交通枢纽绿地土壤重金属综合污染指数为:米东区(4.17)>沙依巴克区(3.24)>新市区(2.84)>水磨沟区(2.70)>头屯河区(2.50)>天山区(2.37)。(3) 不同行政区城市公园绿地土壤重金属的潜在生态风险指数为:水磨沟区(101.68)>头屯河区(98.83)>新市区(88.56)>天山区(73.43)>米东区(58.24),而交通枢纽绿地土壤重金属的潜在生态风险指数为:米东区(177.60)>水磨沟区(131.75)>沙依巴克区(120.25)>新市区(105.76)>头屯河区(105.63)>天山区(82.12)。城市公园绿地土壤综合污染指数和潜在生态风险指数最大的分别为头屯河区和水磨沟区,而城市交通枢纽绿地土壤的综合污染指数和潜在生态风险指数最大的均是米东区。(4) 在空间分布特征上,城市公园绿地土壤高值区总体上以岛状分布在中心城区,而交通枢纽绿地土壤除Ni外,高值区以岛状分布在米东区的西南部和沙依巴克区的东部。工业企业的显著集聚、密集的交通干线和较高的人口密度成为影响不同行政区内土壤重金属污染程度差异的主要因素。

本文引用格式

梁樑 , 郭晓淞 , 陈汉杰 , 徐皓帆 , 周衍波 , 谢邵文 , 杨芬 , 韦朝阳 . 乌鲁木齐市核心城区绿地土壤重金属累积特征及生态风险[J]. 干旱区地理, 2023 , 46(11) : 1868 -1878 . DOI: 10.12118/j.issn.1000-6060.2023.061

Abstract

Owing to rapid urban expansion and industrialization in China, the core urban areas of large cities have suffered from varying degrees of heavy metal pollution in the soil. Herein, the accumulation characteristics and ecological risks of six heavy metals (Cd, Cr, Cu, Pb, Zn, and Ni) in the soils of two distinct urban land types (urban park and transportation hub green lands) within the core urban areas of Urumqi City were systematically studied. The study yielded multiple key results: (1) Soil heavy metal concentrations in the green land soils of transportation hubs were higher than urban parks. Compared with the soil background values of heavy metals in Urumqi City, urban park green land of the core urban area exhibited light pollution, while the green land in transportation hubs demonstrated moderate pollution. (2) The comprehensive pollution index for soil heavy metals within urban park green land varied among different administrative regions, with Toutunhe District (2.85) showing the highest level, followed by Shuimogou District (2.13), Tianshan District (1.91), Xinshi District (1.85), and Midong District (1.23). Conversely, for green land in transportation hubs, the comprehensive pollution index of soil heavy metals differed across administrative regions, with Midong District (4.17) being the most heavily affected, followed by Sayibak District (3.24), Xinshi District (2.84), Shuimogou District (2.70), Tuotunhe District (2.50), and Tianshan District (2.37). (3) Regarding the potential ecological risk index for heavy metals in green soil of urban parks, the rankings among different administrative regions were as follows: Shuimogou District (101.68) >Toutunhe District (98.83) >Xinshi District (88.56) >Tianshan District (73.43) >Midong District (58.24). In addition, for transportation hubs green land, the potential ecological risk index of heavy metals for each administrative region exhibited regional disparities, with Midong District (177.60) being the most adversely affected, followed by Shuimogou District (131.75), Sayibak District (120.25), Xinshi District (105.76), Toutunhe District (105.63), and Tianshan District (82.12). The largest comprehensive pollution index and potential ecological risk index for urban park green land were observed in the Toutunhe and Shuimogou Districts, respectively, while the largest values for urban transportation hubs green land were documented in Midong District. (4) Spatial distribution characteristics revealed that high-value urban park green land was generally distributed in the central urban area, resembling islands of green amidst the urban landscape. Conversely, high-value heavy metal pollution of green land in transportation hubs was distributed in an island shape in the southwestern region of Midong District and the eastern part of Sayibak District, except for Ni. This study identifies key factors affecting the varying degrees of soil heavy metal pollution in different administrative regions, including the concentration of industrial enterprises, dense transportation arteries, and high population density. This study potentially provides a scientific basis and reference for the protection of the soil ecological environment in the core urban area.

参考文献

[1] Xie S W, Yang F, Feng H X, et al. Assessment of potential heavy metal contamination in the peri-urban agricultural soils of 31 provincial capital cities in China[J]. Environmental Management, 2019, 64(3): 366-380.
[2] 国家统计局城市社会经济调查司. 中国城市统计年鉴[M]. 北京: 中国统计出版社, 2011—2022.
[2] [Department of Urban Surveys, National Bureau of Statistics of China. China city statistical yearbook[M]. Beijing: China Statistics Press, 2011—2022. ]
[3] 滕吉艳. 上海城市中心区不同类型绿地土壤重金属污染特征[J]. 土壤通报, 2021, 52(4): 927-933.
[3] [ Teng Jiyan. Contamination characteristics of heavy metals in soils from urban green space in central Shanghai[J]. Chinese Journal of Soil Science, 2021, 52(4): 927-933. ]
[4] 余开升, 柯鹏振, 刘彬, 等. 湖北省中心城区典型绿地土壤污染特征及风险评价[J]. 环境科学与技术, 2023, 46(增刊1): 210-215.
[4] [ Yu Kaisheng, Ke Pengzhen, Liu Bin, et al. Pollution characteristics and risk assessment of typical green space soils in central urban area of Hubei Province[J]. Environmental Science & Technology, 2023, 46(Suppl. 1): 210-215. ]
[5] 邸东柳, 牛小云, 王绍坤, 等. 保定市主城区不同类型绿地土壤化学性质及重金属污染[J]. 东北林业大学学报, 2022, 50(6): 88-95, 110.
[5] [ Di Dongliu, Niu Xiaoyun, Wang Shaokun, et al. Soil chemical properties and heavy metal contamination in different green space types of main urban area, Baoding City[J]. Journal of Northeast Forestry University, 2022, 50(6): 88-95, 110. ]
[6] 排日海·合力力, 昝梅, 阿里木江·卡斯木. 乌鲁木齐市生态环境遥感评价及驱动因子分析[J]. 干旱区研究, 2021, 38(5): 1484-1496.
[6] [ Helili Pariha, Zan Mei, Kasim Alimjan. Remote sensing evaluation of ecological environment in Urumqi City and analysis of driving factors[J]. Arid Zone Research, 2021, 38(5): 1484-1496. ]
[7] 吴亚坤, 刘广明, 杨劲松, 等. 基于反距离权重插值的土壤盐分三维分布解析方法[J]. 农业工程学报, 2013, 29(3): 100-106, 296.
[7] [ Wu Yakun, Liu Guangming, Yang Jinsong, et al. Interpreting method of regional soil salinity 3D distribution based on inverse distance weighting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 100-106, 296. ]
[8] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
[8] [ Chinese General Station of Environmental Monitoring. Soil chemical element background data of China[M]. Beijing: Chinese Environmental Science Press, 1990. ]
[9] Hakanson L. An ecological risk index for aquatic pollution control: A sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001.
[10] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008(2): 112-115.
[10] [ Xu Zhengqi, Ni Shijun, Tuo Xianguo, et al. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 2008(2): 112-115. ]
[11] 朱立安, 殷爱华, 林兰稳, 等. 佛山城市森林公园表层土壤重金属累积特征、影响因素及其评价[J]. 生态环境学报, 2021, 30(4): 849-856.
[11] [ Zhu Li’an, Yin Aihua, Lin Lanwen, et al. Accumulation characteristics, influencing factors and evaluation of heavy metals in surface soil in urban forest park of Foshan[J]. Ecology and Environmental Sciences, 2021, 30(4): 849-856. ]
[12] 孙雪菲, 张丽霞, 董玉龙, 等. 典型石化工业城市土壤重金属源解析及空间分布模拟[J]. 环境科学, 2021, 42(3): 1093-1104.
[12] [ Sun Xuefei, Zhang Lixia, Dong Yulong, et al. Source apportionment and spatial distribution simulation of heavy metals in a typical petrochemical industrial city[J]. Environmental Science, 2021, 42(3): 1093-1104. ]
[13] 李晓燕, 陈同斌, 雷梅, 等. 不同土地利用方式下北京城区土壤的重金属累积特征[J]. 环境科学学报, 2010, 30(11): 2285-2293.
[13] [ Li Xiaoyan, Chen Tongbin, Lei Mei, et al. Accumulation of heavy metals in urban soils under different land uses in Beijing[J]. Acta Scientiae Circumstantiae, 2010, 30(11): 2285-2293. ]
[14] 刘玲玲, 安燕飞, 马瑾, 等. 基于UNMIX模型的北京城区公园土壤重金属源解析[J]. 环境科学研究, 2020, 33(12): 2856-2863.
[14] [ Liu Lingling, An Yanfei, Ma Jin, et al. Source apportionment of soil heavy metals in Beijing urban park based on the UNMIX model[J]. Research of Environmental Sciences, 2020, 33(12): 2856-2863. ]
[15] 张施阳. 基于GIS的上海市不同功能区土壤重金属污染评价及健康风险评估[J]. 环境工程技术学报, 2022, 12(4): 1226-1236.
[15] [ Zhang Shiyang. Assessment of soil heavy metal pollution and health risk in different functional areas of Shanghai City based on GIS[J]. Journal of Environmental Engineering Technology, 2022, 12(4): 1226-1236. ]
[16] 谢邵文, 郭晓淞, 杨芬, 等. 广州市城市公园土壤重金属累积特征、形态分布及其生态风险[J]. 生态环境学报, 2022, 31(11): 2206-2215.
[16] [ Xie Shaowen, Guo Xiaosong, Yang Fen, et al. Accumulation characteristics, geochemical fractions distribution and ecological risk of heavy metals in soils of urban parks in Guangzhou, China[J]. Ecology and Environmental Sciences, 2022, 31(11): 2206-2215. ]
[17] 黄敏, 杨海舟, 余萃, 等. 武汉市土壤重金属积累特征及其污染评价[J]. 水土保持学报, 2010, 24(4): 135-139.
[17] [ Huang Min, Yang Haizhou, Yu Cui, et al. Accumulation characteristics and pollution evaluation of heavy metals in soils of Wuhan City[J]. Journal of Soil and Water Conservation, 2010, 24(4): 135-139. ]
[18] 胡梦珺, 李春艳, 李娜娜, 等. 基于物元可拓模型的兰州市主城区公园表土重金属污染评价[J]. 环境科学, 2021, 42(5): 2457-2468.
[18] [ Hu Mengjun, Li Chunyan, Li Nana, et al. Using the matter-element extension model to assess heavy metal pollution in topsoilin parks in the main district park of Lanzhou City[J]. Environmental Science, 2021, 42(5): 2457-2468. ]
[19] 贾锐鱼, 朱万勇, 李楠, 等. 西安市公园土壤及灰尘中重金属污染与生态风险评价[J]. 水土保持研究, 2015, 22(5): 316-320.
[19] [ Jia Ruiyu, Zhu Wanyong, Li Nan, et al. Heavy metal contents and ecological risk assessment of soils and dust in urban parks of Xi’an City[J]. Research of Soil and Water Conservation, 2015, 22(5): 316-320. ]
[20] 侯佳渝, 杨耀栋, 程绪江. 天津市城区不同功能区绿地土壤重金属分布特征及来源研究[J]. 物探与化探, 2021, 45(5): 1130-1134.
[20] [ Hou Jiayu, Yang Yaodong, Cheng Xujiang. Distribution and sources of heavy metals in greenbelt soil in different functional zones of Tianjin City[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1130-1134. ]
[21] 杨杉, 汪军, 李洪刚, 等. 重庆市绿地土壤重金属污染特征及健康风险评价[J]. 土壤通报, 2018, 49(4): 966-972.
[21] [ Yang Shan, Wang Jun, Li Honggang, et al. Pollution characteristics and health risk assessment of heavy metals in green space of Chongqing City[J]. Chinese Journal of Soil Science, 2018, 49(4): 966-972. ]
[22] 晏星, 罗娜娜, 赵文吉, 等. 北京城区交通边缘带土壤重金属污染研究[J]. 环境科学与技术, 2013, 36(12): 175-180.
[22] [ Yan Xing, Luo Nana, Zhao Wenji, et al. Heavy metal pollution evaluation and spatial influence range analysis for main roads within the fifth ring road of Beijing urban[J]. Environmental Science & Technology, 2013, 36(12): 175-180. ]
[23] 卓文珊, 唐建锋, 管东生. 广州市城区土壤重金属空间分布特征及其污染评价[J]. 中山大学学报(自然科学版), 2009, 48(4): 47-51.
[23] [ Zhuo Wenshan, Tang Jianfeng, Guan Dongsheng. The distributive character and pollution assessment of heavy metals in urban soil of Guangzhou[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2009, 48(4): 47-51. ]
[24] 李春艳. 兰州市主城区不同功能区表土重金属污染特征及风险评价[D]. 兰州: 西北师范大学, 2021.
[24] [ Li Chunyan. Pollution characteristics and risk assessment of topsoil heavy metals in different functional areas in the main urban area of Lanzhou[D]. Lanzhou: Northwest Normal University, 2021. ]
[25] 周燕. 西安市不同功能区土壤重金属与多环芳烃污染研究[D]. 西安: 陕西师范大学, 2018.
[25] [ Zhou Yan. Study on heavy metals and polycyclic aromatic hydrocarbon pollution in soils of different functional areas in Xi’an, China[D]. Xi’an: Shanxi Normal University, 2018. ]
[26] 汪嘉利, 李章平, 杨志敏, 等. 重庆市主城区土壤重金属的污染特征[J]. 重庆师范大学学报(自然科学版), 2012, 29(5): 31-35, 112.
[26] [ Wang Jiali, Li Zhangping, Yang Zhimin, et al. Specificity of heavy metal soils in core zone of Chongqing[J]. Journal of Chongqing Normal University (Natural Science Edition), 2012, 29(5): 31-35, 112. ]
[27] Gu Y G, Gao Y P, Lin Q. Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China’s largest city, Guangzhou[J]. Applied Geochemistry, 2016, 67: 52-58.
[28] Du H M, Lu X W. Spatial distribution and source apportionment of heavy metal(loid)s in urban topsoil in Mianyang, southwest China[J]. Scientific Reports, 2022, 12(1): 10407, doi: 10.1038/s41598-022-14695-9.
[29] Kauhaniemi M, Kukkonen J, H?rk?nen J, et al. Evaluation of a road dust suspension model for predicting the concentrations of PM10 in a street canyon[J]. Atmospheric Environment, 2011, 45(22): 3646-3654.
[30] 姚文文, 陈文德, 黄钟宣, 等. 重庆市主城区土壤重金属形态特征及风险评价[J]. 西南农业学报, 2021, 34(1): 159-164.
[30] [ Yao Wenwen, Chen Wende, Huang Zhongxuan, et al. Speciation characteristics and risk assessment of heavy metals in soil in core zone of Chongqing[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(1): 159-164. ]
[31] 于瑞莲, 胡恭任, 袁星, 等. 大气降尘中重金属污染源解析研究进展[J]. 地球与环境, 2009, 37(1): 73-79.
[31] [ Yu Ruilian, Hu Gongren, Yuan Xing, et al. Development in research on pollution source of heavy metals from atmospheric dust-recognition and analysis[J]. Earth and Environment, 2009, 37(1): 73-79. ]
[32] 彭驰, 何亚磊, 郭朝晖, 等. 中国主要城市土壤重金属累积特征与风险评价[J]. 环境科学, 2022, 43(1): 1-10.
[32] [ Peng Chi, He Yalei, Guo Zhaohui, et al. Characteristics and risk assessment of heavy metals in urban soils of major cities in China[J]. Environmental Science, 2022, 43(1): 1-10. ]
[33] Chen T, Chang Q R, Liu J, et al. Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: A case study in northwest China[J]. Science of the Total Environment, 2016, 565: 155-164.
[34] 蔺尾燕, 何静, 祝婕, 等. 米东工业园区大气污染物排放对乌鲁木齐市空气质量影响[J]. 新疆环境保护, 2022, 44(2): 9-15.
[34] [ Lin Weiyan, He Jing, Zhu Jie, et al. Impact of airpollutant emissions in the Midong industrial park on air quality in Urumqi City[J]. Environmental Protection of Xinjiang, 2022, 44(2): 9-15. ]
[35] Somayeh S G, Mohsen G, Morteza G. Pollution, human health risk assessment and spatial distribution of toxic metals in urban soil of Yazd City, Iran[J]. Environmental Geochemistry and Health, 2021, 43(9): 1-16.
[36] 石天戈, 时卉. 基于地理探测器的乌鲁木齐城市扩张特征与时空驱动因素分析[J]. 干旱区地理, 2021, 44(3): 867-876.
[36] [ Shi Tiange, Shi Hui. Urban expansion and its temporal and spatial driving forces of Urumqi based on geo-detector method[J]. Arid Land Geography, 2021, 44(3): 867-876. ]
文章导航

/