气候与水文

中国天山西部区域云降水物理野外观测科学试验研究若干进展

  • 杨涛 ,
  • 杨莲梅 ,
  • 李建刚 ,
  • 仝泽鹏
展开
  • 1.中国气象局乌鲁木齐沙漠气象研究所,新疆 乌鲁木齐 830002
    2.新疆气候中心,新疆 乌鲁木齐 830002
    3.新疆云降水物理与云水资源开发实验室,新疆 乌鲁木齐 830002
    4.西天山云降水物理野外科学观测试验基地,新疆 新源 844900
杨涛(1969-),男,高级工程师,主要从事天气气候研究. E-mail: yd_yang@sina.com

收稿日期: 2023-02-13

  修回日期: 2023-03-15

  网络出版日期: 2023-11-10

基金资助

天山英才培养计划项目(2022TSYCLJ0003);中央级公益性科研院所基本科研业务费专项资金项目(IDM2022001);中国气象局乌鲁木齐沙漠气象研究所科技发展基金(KJFZ202301)

Progress of the scientific experimental for cloud and precipitation physical observation in the western Tianshan Mountains of China

  • Tao YANG ,
  • Lianmei YANG ,
  • Jiangang LI ,
  • Zepeng TONG
Expand
  • 1. Institute of Desert and Meteorology, China Meteorological Administration, Urumqi 830002, Xinjiang, China
    2. Xinjiang Climate Center, Urumqi 830002, Xinjiang, China
    3. Xinjiang Cloud Precipitation Physics and Cloud Water Resources Development Laboratory, Urumqi 830002, Xinjiang, China
    4. Field Scientific Observation Base of Cloud Precipitation Physics in West Tianshan Mountains, Xinyuan 844900, Xinjiang, China

Received date: 2023-02-13

  Revised date: 2023-03-15

  Online published: 2023-11-10

摘要

天山西部区域是中亚地区降水量最多的区域,其向西开口独特河谷地形与西风环流构成了中亚区域独有的云降水物理过程,降水形成积雪、冰川和径流对中亚社会经济和生态环境形成重要影响。随着国家“丝绸之路经济带”建设的推进,对中亚水资源、气象防灾减灾和生态环境保护提出了严峻的科技挑战,而该区域云降水物理过程的观测和研究是科技基础,仍处于起步阶段,不能满足国家战略和中国气象事业发展需求,为此于2019年建设了天山西部区域云降水物理野外观测科学试验基地,并对云宏微物理、层状云/对流云雨滴谱、中/西天山雨滴谱特征异同、冷锋暴雪微物理等开展了相关研究并取得了前沿成果,本文对此进行提炼总结,以期推动中亚地区云降水物理学科发展。

本文引用格式

杨涛 , 杨莲梅 , 李建刚 , 仝泽鹏 . 中国天山西部区域云降水物理野外观测科学试验研究若干进展[J]. 干旱区地理, 2023 , 46(10) : 1602 -1611 . DOI: 10.12118/j.issn.1000-6060.2023.056

Abstract

The western Tianshan Mountains in China experiences the highest precipitation in Central Asia. The unique valley topography of the mountains at its westward opening and westerly circulation lead to an exclusive cloud-precipitation physical process in Central Asia. The formation of snow and glaciers and runoff by precipitation considerably affects the social economy and ecological environment of Central Asia. The proposal and implementation of the national “Silk Road Economic Belt” construction have posed serious scientific and technological challenges to water resources, meteorological disaster prevention and mitigation, and ecological environment protection in Central Asia. The observation and research on cloud-precipitation physical processes in this region is the basis of science and technology; however, it is still in its nascent stage and cannot meet the requirements of the national plan and China’s meteorological development. Hence, herein, a scientific experimental base was built for the field observation of cloud and precipitation physics in the western Tianshan Mountains of China in 2019, and relevant research was conducted on the macro and microphysical characteristics of clouds, raindrop spectrum characteristics of stratiform and convective clouds, similarities and differences in the raindrop spectrum characteristics between the central and western Tianshan Mountains, and microphysical characteristics of cold front snowstorm. This paper summarizes the frontier achievements to promote the development of cloud and precipitation physics in Central Asia.

参考文献

[1] 张强, 张杰, 孙国武, 等. 祁连山山区空中水汽分布特征研究[J]. 气象学报, 2007, 65(4): 633-643.
[1] [Zhang Qiang, Zhang Jie, Sun Guowu, et al. Research on atmospheric water-vapor distribution over Qilianshan Mountains[J]. Acta Meteorologica Sinica, 2007, 65(4): 633-643. ]
[2] 张强, 俞亚勋, 张杰. 祁连山与河西内陆河流域绿洲的大气水循环特征研究[J]. 冰川冻土, 2008, 30(6): 907-913.
[2] [Zhang Qiang, Yu Yaxun, Zhang Jie. Characteristics of water cycle in the Qilianshan Mountains and oases in Hexi inland river basins[J]. Journal of Glaciology and Geocryology, 2008, 30(6): 907-913. ]
[3] 姚旭阳, 张明军, 张宇, 等. 中国西北地区气候转型的新认识[J]. 干旱区地理, 2022, 45(3): 671-683.
[3] [Yao Xuyang, Zhang Mingjun, Zhang Yu, et al. New insights into climate transition in northwest China[J]. Arid Land Geography, 2022, 45(3): 671-683. ]
[4] Sorg A, Bolch T, Stoffel M, et al. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)[J]. Nature Climate Change, 2012, 2(10): 725-731.
[5] Chen Y N, Li W H, Deng H J, et al. Changes in Central Asia’s water tower: Past, present and future[J]. Scientific Reports, 2016, 6: 35458, doi: 10.1038/srep35458.
[6] 陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26.
[6] [Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountians, Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 18-26. ]
[7] 刘黎平, 郑佳锋, 阮征, 等. 2014年青藏高原云和降水多种雷达综合观测试验及云特征初步分析结果[J]. 气象学报, 2015, 73(4): 635-647.
[7] [Liu Liping, Zheng Jiafeng, Ruan Zheng, et al. The preliminary analyses of the cloud properties over the Tibetan Plateau from the field experiments in clouds precipitation with the various radars[J]. Acta Meteorologica Sinica, 2015, 73(4): 635-647. ]
[8] Chen B J, Hu Z Q, Liu L P, et al. Raindrop size distribution measurements at 4500 m on the Tibetan Plateau during TIPEX-III[J]. Journal of Geophysical Research: Atmospheres, 2017, 122: 11092-11106.
[9] Wu Y H, Liu L P. Statistical characteristics of raindrop size distribution in the Tibetan Plateau and southern China[J]. Advances in Atmospheric Sciences, 2017, 34: 727-736.
[10] 赵平, 李跃清, 郭学良, 等. 青藏高原地气耦合系统及其天气气候效应: 第三次青藏高原大气科学试验[J]. 气象学报, 2018, 76(6): 833-860.
[10] [Zhao Ping, Li Yueqing, Guo Xueliang, et al. The Tibetan Plateau surface-atmosphere coupling system and its weather and climate effects: The third Tibetan Plateau atmospheric scientific experiment[J]. Acta Meteorologica Sinica, 2018, 76(6): 833-860. ]
[11] Wang G L, Zhou R R, Zhaxi S, et al. Raindrop size distribution measurements on the southeast Tibetan Plateau during the STEP project[J]. Atmosphere Research, 2021, 249: 105311, doi: 10. 1016/j.atmosres.2020.105311.
[12] Wu Z H, Zhang Y, Zhang L F, et al. Characteristics of summer season raindrop size distribution in three typical regions of western Pacific[J]. Journal of Geophysical Research: Atmospheres, 2019, 124: 4054-4073.
[13] Zeng Q W, Zhang Y, Lei H C, et al. Microphysical characteristics of precipitation during pre-monsoon, monsoon, and post-monsoon periods over the South China Sea[J]. Advances in Atmospheric Sciences, 2019, 36(10): 1103-1120.
[14] Zhang A, Hu J, Chen S. Statistical characteristics of raindrop size distribution in the monsoon season observed in southern China[J]. Remote Sensing, 2019, 11: 432, doi: 10.3390/rs11040432.
[15] Huang C Y, Chen S, Zhang A. et al. Statistical characteristics of raindrop size distribution in monsoon season over South China Sea[J]. Remote Sensing, 2021, 13(15): 2878, doi: 10.3390/rs13152878.
[16] Wen L, Zhao K, Chen G. Drop size distribution characteristics of seven typhoons in China[J]. Journal of Geophysical Research: Atmospheres, 2018, 123: 6529-6548.
[17] Fu Z K, Dong X Q, Zhou L L. et al. Statistical characteristics of raindrop size distributions and parameters in Central China during the Meiyu seasons[J]. Journal of Geophysical Research: Atmospheres, 2020, 125, e2019JD031954, doi: 10.1029/2019JD031954.
[18] Atlas D, Srivastava R C, Sekhon R. Doppler radar characteristics of precipitation at vertical incidence[J]. Reviews of Geophysics, 1973, 11(1): 1-35.
[19] Brandes E A, Zhang G, Vivekanandan J. An evaluation of a drop distribution-based polarimetric radar rainfall estimator[J]. Journal of Applied Meteorology, 2003, 42(5): 652-660.
[20] Chen B J, Yang J, Pu J P. Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China[J]. Journal of the Meteorological Society of Japan, 2013, 91(2): 215-227.
[21] Chen P, Yang L M, Zeng Y, et al. Fine vertical structures of cloud from a ground-based cloud radar over the western Tianshan Mountains[J]. Meteorological Applications, 2022, 29: e2015, doi: 10.1002/met.2105.
[22] 张晋茹, 杨莲梅, 刘凡, 等. 基于Ka波段云雷达观测的中国西天山降雨云宏微观物理特征研究[J]. 大气科学, 2023, 47(3): 756-768.
[22] [Zhang Jinru, Yang Lianmei, Liu Fan, et al. Macro-micro physical characteristics of rainfall clouds in the west Tianshan Mountains based on Ka band cloud radar[J]. Chinese Journal of Atmospheric Sciences, 2023, 47(3): 756-768. ]
[23] 黄颖, 付丹红, 郭学良, 等. 青藏高原东北部祁连山一次降水性层状云微物理特征的飞机观测研究[J]. 大气科学, 2022, doi: 10.3878/j.issn.1006-9895.2207.22019.
[23] [Huang Ying, Fu Danhong, Guo Xueliang, et al. Aircraft measurement on the microphysical properties of a precipitating stratiform cloud event in the Qilian Mountains of the northeastern Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2022, doi: 10.3878/j.issn.1006-9895.2207.22019. ]
[24] Zhang J R, Li H R, Zeng Y, et al. Macro-and microphysical characteristics of snowfall and non-snowfall clouds in the west Tianshan Mountains of China based on cloud radar[J]. Meteorology and Atmospheric Physics, 2022, 134: 98, doi: 10.1007/s00703-022-00914-5.
[25] 陈羿辰, 金永利, 丁德平, 等. 毫米波测云雷达在降雪观测中的应用初步分析[J]. 大气科学 2018, 42(1): 134-149.
[25] [Chen Yichen, Jin Yongli, Ding Deping, et al. Preliminary analysis on the application of millimeter wave cloud radar in snow observation[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(1): 134-149. ]
[26] Zeng Y, Yang L M, Tong Z P, et al. Statistical characteristics of raindrop size distribution during rainy seasons in northwest China[J]. Advance in Meteorology, 2021: 6667786, doi: 10.1155/2021/6667786.
[27] 黄兴友, 印佳楠, 马雷, 等. 南京地区雨滴谱参数的详细统计分析及其在天气雷达探测中的应用[J]. 大气科学, 2019, 43(3): 691-704.
[27] [Huang Xingyou, Yin Jianan, Ma Lei, et al. Comprehensive statistical analysis of rain dropsize distribution parameter and its application for weather radar measurement in Nanjing[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(3): 691-704. ]
[28] Zeng Y, Tong Z P, Jiang Y F, et al. Microphysical characteristics of seasonal rainfall observed by a Parsivel disdrometer in the Tianshan Mountains, China[J]. Atmospheric Research, 2022, 280: 106459, doi: 10.1016/j.atmosres.2022.106459.
[29] Zeng Y, Yang L M, Tong Z P, et al. Characteristics and applications of summer season raindrop size distributions based on a Parsivel2 disdrometer in the western Tianshan Mountains (China)[J]. Remote Sensing, 2022, 14(16): 3988, doi: 10.3390/rs14163988.
[30] Jiang Y F, Yang L M, Zeng Y, et al. Comparison of summer raindrop size distribution characteristics in the western and central Tianshan Mountains of China[J]. Meteorology Application, 2022, 29: e2067, doi: 10.1002/met.2067.
[31] Zeng Y, Yang L M, Zhou Y S, et al. Statical characteristics of summer season raindrop size distribution in the western and central Tianshan Mountions in China[J]. Journal of the Meteorological Society of Japan, 2022, 100(6): 855-872.
[32] Wen L, Zhao K, Zhang G, et al. Statistical characteristics of raindrop size distributions observed in east China during the Asian summer monsoon season using 2-D video disdrometer and micro rain radar data[J]. Journal of Geophysical Research: Atmospheres, 2016, 121: 2265-2282.
[33] Wen G, Xiao H, Yang H L, et al. Characteristics of summer and winter precipitation over northern China[J]. Atmospheric Research, 2017, 197: 390-406.
[34] 刘凡, 张晋茹, 刘晶, 等. 西天山地区一次冷锋暴雪微物理特征分析[J]. 大气科学, 2023, 47(2): 417-429.
[34] [Liu Fan, Zhang Jinru, Liu Jing, et al. Microphysical characteristics of a cold front snowstorm in the west Tianshan[J]. Chinese Journal of Atmospheric Sciences, 2023, 47(2): 417-429. ]
[35] 李遥, 牛生杰, 吕晶晶, 等. 2018年冬季南京三次暴雪过程微物理特征分析[J]. 大气科学 2019, 43(5): 1095-1108.
[35] [Li Yao, Niu Shengjie, Lü Jingjing, et al. Analysis on microphysical characteristics of three blizzard processes in Nanjing in the winter of 2018[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(5): 1095-1108. ]
文章导航

/