气候与水文

陕西省汛期极端降水概率分布及综合危险性评估

  • 史维良 ,
  • 车璐阳 ,
  • 李涛
展开
  • 西安财经大学统计学院,陕西 西安 710100
史维良(1973-),女,硕士,副教授,主要从事应用统计与风险管理等方面的研究. E-mail: 1605645131@qq.com

收稿日期: 2022-11-02

  修回日期: 2023-01-06

  网络出版日期: 2023-09-28

基金资助

国家社会科学基金青年项目(20CTJ008);陕西省社会科学基金项目(2020F003);西安财经大学研究生创新基金项目(21YC031)

Probability distribution and comprehensive risk assessment of extreme precipitation in flood season in Shaanxi Province

  • Weiliang SHI ,
  • Luyang CHE ,
  • Tao LI
Expand
  • School of Statistics, Xi’an University of Finance and Economics, Xi’an 710100, Shaanxi, China

Received date: 2022-11-02

  Revised date: 2023-01-06

  Online published: 2023-09-28

摘要

极端降水导致的暴雨洪涝灾害是陕西省第二大自然灾害,对社会稳定及经济发展造成了严重的影响。为明确极端降水风险,利用陕西省1969—2020年汛期(5—10月)的日降水数据构建极端降水量、极端降水频次、极端降水强度序列,选取6种极值概率分布模型对构建的序列进行拟合得到陕西省汛期极端降水最优概率分布模型;计算极端降水量以判断未来陕西省极端降水事件变化趋势;基于不同情景得到综合危险性空间分布,对陕西省极端降水综合危险性进行评估。结果表明:(1) Wakeby概率分布为最优概率模型,在3个极端降水指标序列中占比最多,且经过误差分析对比得到Wakeby分布函数是拟合陕西省汛期极端降水指标序列的最优概率分布模型。(2) 计算不同重现期下的极端降水量与现有降水最大值进行对比,发现陕西省大多数地区发生小概率、高危险性的极端降水事件可能性增大。(3) 陕西省汛期极端降水综合危险性整体从陕南至陕北呈南高北低分布,2 a、5 a、10 a、20 a、50 a、100 a一遇情景下危险区域各不相同。随着重现期的增加,低危险区逐渐消失,高危险区面积逐渐增大,100 a重现期下,高危险区面积占比从0增长至22.0%。研究结果可为陕西省极端降水概率分布研究提供参考,为汛期极端降水风险管理和评估工作提供理论依据。

本文引用格式

史维良 , 车璐阳 , 李涛 . 陕西省汛期极端降水概率分布及综合危险性评估[J]. 干旱区地理, 2023 , 46(9) : 1407 -1417 . DOI: 10.12118/j.issn.1000-6060.2022.567

Abstract

Rainstorms and the resulted floods represent the second most important type of natural disaster in the Shaanxi Province of China. To clearly describe the risk arising from extreme precipitation events, extreme precipitation amount, frequency, and intensity series were constructed using 1969—2020 flood season (May-October) daily precipitation data for Shaanxi Province. Six extreme-value probability distribution models were selected to fit the constructed series to obtain the optimal probability distribution model for flood season extreme precipitation and to evaluate the future trend of extreme precipitation events in Shaanxi Province. The comprehensive risk of extreme precipitation was evaluated based on spatial risk distributions of different scenarios in Shaanxi Province. The results showed that: (1) Through error analysis and comparison, the Wakeby probability distribution was found to be the optimal model for fitting the sequence of extreme precipitation indicators during the flood season in Shaanxi Province, accounting for the largest proportion of extreme values in the three constructed series. (2) Extreme precipitation values with different return periods were calculated and compared with existing maximum precipitation values. An increased probability of low-probability and high-risk extreme precipitation events was found for most areas of Shaanxi Province. (3) The comprehensive risk of extreme precipitation during the flood season was found to be generally high in the south and low in the north of Shaanxi Province. Risk areas differed between scenarios of 2-, 5-, 10-, 20-, 50-, and 100-year return periods. With increasing return periods, the low-risk area gradually reduced and the high-risk area gradually increased. In the 100-year return period scenario, the high-risk area increased from 0 to 22.0%. The study provides a reference for the investigation of extreme precipitation probability distributions in Shaanxi Province and provides a theoretical basis for extreme precipitation risk management and assessment during flood seasons.

参考文献

[1] 唐明秀, 孙劭, 朱秀芳, 等. 基于CMIP6的中国未来暴雨危险性变化评估[J]. 地球科学进展, 2022, 37(5): 519-534.
[1] [Tang Mingxiu, Sun Shao, Zhu Xiufang, et al. CMIP6 assessment of changes in hazard of future rainstorms in China[J]. Advances in Earth Science, 2022, 37(5): 519-534.]
[2] 应急管理部发布2021年全国自然灾害基本情况[J]. 中国减灾, 2022(3): 7.
[2] [Ministry of Emergency Management of the People’s Republic of China released the basic information of national natural disasters in 2021[J]. Disater Reduction in China, 2022(3): 7.]
[3] Liang L, Zhao L N, Gong Y F, et al. Probability distribution of summer daily precipitation in the Huaihe Basin of China based on Gamma distribution[J]. Acta Meteorologica Sinica, 2012, 26(1): 72-84.
[4] 桂文林, 徐芳燕. 广义Pareto分布尾部厚度的分析与应用[J]. 统计与决策, 2009(6): 153-155.
[4] [Gui Wenlin, Xu Fangyan. Analysis and application of tail thickness of generalized Pareto distribution[J]. Statistic & Decision, 2009(6): 153-155.]
[5] 葛咏, 李强子, 凌峰, 等. “一带一路”关键节点区域极端气候风险评价及应对策略[J]. 中国科学院院刊, 2021, 36(2): 170-178.
[5] [Ge Yong, Li Qiangzi, Ling Feng, et al. Risk assessment and response strategies for extreme climate events in key nodes of the Belt and Road[J]. Bulletin of Chinese Academy of Science, 2021, 36(2): 170-178.]
[6] 唐瑜聪. 深圳市极端气候时空特征及其灾害风险评估[D]. 北京: 中国地质大学, 2017.
[6] [Tang Yucong. Spatial-temporal characteristics and disater risk assessment of climate extremes in Shenzhen[D]. Beijing: China University of Geosciences, 2017.]
[7] 周静静, 张晓敏, 赵法锁, 等. 陕南秦巴山区地质灾害危险性评价研究[J]. 地质力学学报, 2019, 25(4): 544-553.
[7] [Zhou Jingjing, Zhang Xiaomin, Zhao Fasuo, et al. Research on risk assessment of geological hazards in Qinling-Daba Mountain area, south Shannxi Province[J]. Journal of Geomechanics, 2019, 25(4): 544-553.]
[8] 王鹏, 邓红卫. 基于GIS和Logistic回归模型的洪涝灾害区划研究[J]. 地球科学进展, 2020, 35(10): 1064-1072.
[8] [Wang Peng, Deng Hongwei. Study on flood hazard risk zoning based on GIS and Logistic regression model[J]. Advances in Earth Science, 2020, 35(10): 1064-1072.]
[9] 迟潇潇. 1960—2009年中国极端降水时空特征及风险分析[D]. 上海: 上海师范大学, 2016.
[9] [Chi Xiaoxiao. Temporal and spatial characteristics and risk analysis of extreme precipitation in China from 1960 to 2009[D]. Shanghai: Shanghai Normal University, 2016.]
[10] 华商网. 陕西省第一次全国自然灾害综合风险普查工作稳步推进[EB/OL]. [2021-09-09]. https://www.emerinfo.cn/2021-09/09/c_1211362962.htm.
[10] [Huashangwang. The first national natural disaster comprehensive risk survey in Shaanxi Province has been steadily promoted[EB/OL]. [2021-09-09]. https://www.emerinfo.cn/2021-09/09/c_1211362962.htm.]
[11] 光明网. 汉江出现2021年第1号洪水[EB/OL]. [2021-08-23]. https://m.gmw.cn/baijia/2021-08/23/1302505566.html.
[11] [Guangmingwang. The first flood in 2021 occurs in Hanjiang River[EB/OL]. [2021-08-23]. https://m.gmw.cn/baijia/2021-08/23/1302505566.html.]
[12] 宋晓猛, 张建云, 孔凡哲. 基于极值理论的北京市极端降水概率分布研究[J]. 中国科学:技术科学, 2018, 48(6): 639-650.
[12] [Song Xiaomeng, Zhang Jianyun, Kong Fanzhe. Probability distribution of extreme precipitation in Beijing based on extreme value theory[J]. Scientis Sinica (Technologica), 2018, 48(6): 639-650.]
[13] 佘敦先, 夏军, 张永勇, 等. 近50年来淮河流域极端降水的时空变化及统计特征[J]. 地理学报, 2011, 66(9): 1200-1210.
[13] [She Dunxian, Xia Jun, Zhang Yongyong, et al. The trend analysis and statistical distribution of extreme rainfall events in the Huaihe River in the past 50 years[J]. Acta Geographica Sinica, 2011, 66(9): 1200-1210.]
[14] 张明, 李国胜. 关中地区极端降水时空变化及概率特征研究[J]. 人民黄河, 2021, 43(11): 59-64.
[14] [Zhang Ming, Li Guosheng. Trend analysis and statistical distribution of extreme rainfall in Guanzhong area[J]. Yellow River, 2021, 43(11): 59-64.]
[15] 陆苗, 高超, 姚梦婷, 等. 淮河流域极端降水概率分布模型及其应用[J]. 水土保持通报, 2016, 36(2): 197-203, 208.
[15] [Lu Miao, Gao Chao, Yao Mengting, et al. Probability distribution model and its application on extreme precipitation in Huaihe River Basin[J]. Bulletin of Soil and Water Conservation, 2016, 36(2): 197-203, 208.]
[16] 陆苗, 高超, 苏布达, 等. 淮河流域极端降水空间分布及概率特征[J]. 自然灾害学报, 2015, 24(5): 160-168.
[16] [Lu Miao, Gao Chao, Su Buda, et al. Spatial distribution and probabilistic characteristics of extreme precipitation in the Huaihe River Basin[J]. Journal of Natural Disasters, 2015, 24(5): 160-168.]
[17] 李占玲, 王武, 李占杰. 基于GPD分布的黑河流域极端降水频率特征分析[J]. 地理研究, 2014, 33(11): 2169-2179.
[17] [Li Zhanling, Wang Wu, Li Zhanjie. Frequency analysis of extreme precipitation in Heihe River Basin based on generalized Pareto distribution[J]. Geographical Research, 2014, 33(11): 2169-2179.]
[18] Houghton J C. Birth of a parent: The Wakeby distribution for modeling floor flows[J]. Water Resource Research, 1978, 14(6): 1105-1109.
[19] Min S K, Zhang X, Zwiers F W, et al. Hunman contribution to more-intense precipitation extremes[J]. Nature, 2011, 470(7334): 378-381.
[20] GB/T 28592-2012. 中华人民共和国国家标准: 降水量等级[S]. 北京: 中国标准出版社, 2012.
[20] [GB/T 28592-2012. National standard of the People’s Republic of China: Precipitation grade[S]. Beijing: Standards Press of China, 2012.]
[21] 丁莹莹, 邱德勋, 吴常雪, 等. 关中平原极端降水时空变化及其与大气环流的关系[J]. 干旱区研究, 2022, 39(1): 104-112.
[21] [Ding Yingying, Qiu Dexun, Wu Changxue, et al. Spatial-temporal variations in extreme precipitation and their relationship with atmospheric circulation in the Guanzhong Plain[J]. Arid Zone Research, 2022, 39(1): 104-112.]
[22] 李乐乐, 钞锦龙, 赵德一, 等. 1957—2019年山西省暴雨时空分布特征与暴雨灾害风险评估[J]. 干旱区地理, 2023, 46(5): 689-699.
[22] [Li Lele, Chao Jinlong, Zhao Deyi, et al. Spatio-temporal distribution characteristics of rainstorm and risk assessment of rainstorm disasters in Shanxi Province from 1957 to 2019[J]. Arid Land Geography, 2023, 46(5): 689-699.]
[23] 荣广智, 张继权, 李天涛, 等. 极端降水诱发地质灾害链风险评估研究——以贵州省水城县为例[J]. 灾害学, 2022, 37(4): 201-210.
[23] [Rong Guangzhi, Zhang Jiquan, Li Tiantao, et al. Study on risk assessment of extreme precipitation-induced geological disaster chain: A case study of Shuicheng County, Guizhou Province[J]. Journal of Catastrophology, 2022, 37(4): 201-210.]
[24] 周波涛, 钱进. IPCC AR6报告解读: 极端天气气候事件变化[J]. 气候变化研究进展, 2021, 17(6): 713-718.
[24] [Zhou Botao, Qian Jin. Changes of weather and climate extremes in the IPCC AR6[J]. Climate Change Research, 2021, 17(6): 713-718.]
[25] 王月华, 李占玲, 赵韦. 河西走廊内陆河流域极端降水特征分析[J]. 北京师范大学学报(自然科学版), 2016, 52(3): 333-339.
[25] [Wang Yuehua, Li Zhanling, Zhao Wei. Characteristics of precipitation extremes for inland river basins in Hexi Corridor[J]. Journal of Beijing Normal University (Natural Science Edition), 2016, 52(3): 333-339.]
[26] 张利平, 杜鸿, 夏军, 等. 气候变化下极端水文事件的研究进展[J]. 地理科学进展, 2011, 30(11): 1370-1379.
[26] [Zhang Liping, Du Hong, Xia Jun, et al. Progress in the study of extreme hydrologic events under climate change[J]. Progress in Geography, 2011, 30(11): 1370-1379.]
文章导航

/