气候与水文

基于红皮云杉(Picea koraiensis)重建大兴安岭南麓历史径流量

  • 魏英楠 ,
  • 马龙 ,
  • 孙柏林 ,
  • 张晶
展开
  • 内蒙古农业大学水利与土木建筑工程学院,内蒙古 呼和浩特 010018
魏英楠(1997-),女,硕士研究生,主要从事水文学及水资源、气候变化、环境演变及三者间的响应关系研究. E-mail: 1985746088@qq.com

收稿日期: 2022-10-17

  修回日期: 2022-12-26

  网络出版日期: 2023-09-21

基金资助

国家自然科学基金(52069019);国家自然科学基金(51869016);国家自然科学基金(51669016);内蒙古自治区“草原英才”工程资助

Reconstruction of historical runoff in the southern foothills of the Da Hinggan Ling Mountains based on Picea koraiensis

  • Yingnan WEI ,
  • Long MA ,
  • Bolin SUN ,
  • Jing ZHANG
Expand
  • Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China

Received date: 2022-10-17

  Revised date: 2022-12-26

  Online published: 2023-09-21

摘要

基于红皮云杉(Picea koraiensis)年轮宽度标准化年表重建了大兴安岭南麓贡格尔河流域1845—2016年历史径流量序列。结果表明:(1)贡格尔河流域在过去172 a共经历1853—1855年、2000—2010年2个枯水期和1869—1873年、1911—1918年、1952—1958年3个丰水期,丰水年及枯水年占比分别为17.4%和10.5%。(2)重建序列存在显著的3 a、7~12 a、15~22 a及30 a周期,研究区水文变化受全球大尺度气候环流活动的影响。丰、枯水期与该地区历史典籍记载的自然灾害高度重合,与附近其他重建结果相关性显著,重建方程稳定可靠。研究结果丰富了大兴安岭地区树木年轮数据库,为区域长历史时期水文变化的研究提供参考。

本文引用格式

魏英楠 , 马龙 , 孙柏林 , 张晶 . 基于红皮云杉(Picea koraiensis)重建大兴安岭南麓历史径流量[J]. 干旱区地理, 2023 , 46(8) : 1269 -1278 . DOI: 10.12118/j.issn.1000-6060.2022.532

Abstract

To understand and master the historical hydrological change patterns and characteristics of the Da Hinggan Ling Mountains, a standardized chronology of tree annual rings width was constructed by Picea koraiensis. After analyzing the response relationships of chronology to hydrological and climatic factors such as temperature and runoff, it was found that runoff was the main controlling factor affecting the radial growth of Picea koraiensis, hence the historical runoff series of Gonger River drainage area from 1845 to 2016 were reconstructed using tree-ring width chronology. The reconstruction equations are accurate and reliable and can be used in the reconstruction of historical runoff. The reconstruction results showed that the runoff sequence of the Gonger drainage area showed an overall decreasing trend, with abrupt changes in 1849, 1854 and 1993, experienced a total of seven drying periods and six wetting periods in the last 172 years, there were two dry seasons (1853—1855 and 2000—2010) and three wet seasons (1869—1873, 1911—1918 and 1952—1958), the proportion of wet years and dry years was 17.4% and 10.5%. The reconstructed sequences have significant cycles of 3 a, 7-12 a, 15-22 a and 30 a, the hydroclimate of the study area is influenced by global large-scale activities. The wet and dry periods are generally consistent with the historical canonical records of natural disasters in the region, and correlate significantly with other reconstruction results in the vicinity. The innovation of this paper is to reconstruct the runoff variation characteristics of the southern Da Hinggan Ling Mountains in the last two centuries by using the precious tree species Picea koraiensis, which enriches the tree-ring database in this area and provides a reference for the study of hydrological changes in the region during long historical periods.

参考文献

[1] IPCC. Climate change 2021:The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[R/OL]. [2021-08-09]. https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf.
[2] Collins D N. Climatic warming, glacier recession and runoff from Alpine basins after the Little Ice Age maximum[J]. Annals of Glaciology, 2008, 48: 119-124.
[3] Jiang Y, Cao Y, Zhang J, et al. A 168-year temperature recording based on tree rings and latitude differences in temperature changes in northeast China[J]. International Journal of Biometeorology, 2021, 65(11): 1859-1870.
[4] Fritts H. Tree rings and climate[M]. Cambridge: Academic Press, 2012.
[5] Woodhouse C A, Overpeck J T. 2000 years of drought variability in the central United States[J]. Bulletin of the American Meteorological Society, 1998, 79(12): 2693-2714.
[6] Brice B L, Coulthard B L, Homfeld I K, et al. Paleohydrological context for recent floods and droughts in the Fraser River Basin, British Columbia, Canada[J]. Environmental Research Letters, 2021, 16(12): 124074, doi: 10.1088/1748-9326/ac3daf.
[7] Hutton P H, Meko D M, Roy S B. Supporting restoration decisions through integration of tree-ring and modeling data: Reconstructing flow and salinity in the San Francisco estuary over the past millennium[J]. Water, 2021, 13(15): 2139, doi: 10.3390/w13152139.
[8] Sane I, Saghafian B, Hassanjabbar A. Reconstruction of water balance components using tree-ring proxy records[J]. Water and Environment Journal, 2020, 34(3): 381-390.
[9] Starheim C C A, Smith D J, Prowse T D. Dendrohydroclimate reconstructions of July-August runoff for two nival-regime rivers in west central British Columbia[J]. Hydrological Processes, 2013, 27(3): 405-420.
[10] Nasreen S, Sou?ková M, Vargas Godoy M R, et al. A 500-year annual runoff reconstruction for 14 selected European catchments[J]. Earth System Science Data, 2022, 14(9): 4035-4056.
[11] Matskovsky V V, Dolgova E A, Solomina O N. Teberda Valley runoff variability (AD 1850—2005) based on tree-ring reconstruction (Northern Caucasus, Russia)[J]. IOP Conference Series: Earth and Environmental Science, 2010, 9(1): 12-17.
[12] 李江风, 袁玉江, 由希尧. 树木年轮水文学研究与应用[M]. 北京: 科学出版社, 2000.
[12] [Li Jiangfeng, Yuan Yujiang, You Xiyao. Hydrological research and application of tree-ring[M]. Beijing: Science Press, 2000.]
[13] Wang T, Bao A, Xu W, et al. Tree-ring-based assessments of drought variability during the past 400 years in the Tianshan Mountains, arid Central Asia[J]. Ecological Indicators, 2021, 126: 107702, doi: 10.1016/j.ecolind.2021.107702.
[14] Zhang T, Liu Y, Zhang R, et al. Tree-ring width based streamflow reconstruction for the Kaidu River originating from the central Tianshan Mountains since AD 1700[J]. Dendrochronologia, 2020, 61: 125700, doi: 10.1016/j.dendro.2020.125700.
[15] Chen Y, Chen F, Zhang H. A Tree-ring-based precipitation reconstruction since 1760 CE from northeastern Tibetan Plateau, China[J]. Atmosphere, 2021, 12(4): 416, doi: 10.3390/atmos12040416.
[16] Zhu L, Cooper D J, Han S, et al. Influence of the Atlantic multidecadal oscillation on drought in northern Daxing’an Mountains, northeast China[J]. Catena, 2021(198): 105017, doi: 10.1016/j.catena.2020.105017.
[17] 韩艳刚, 盖学瑞, 邱思玉, 等. 大兴安岭兴安落叶松径向生长对气候响应的时空变化[J]. 应用生态学报, 2021, 32(10): 3397-3404.
[17] [Han Yangang, Gai Xuerui, Qiu Siyu, et al. Spatial and temporal variations of the responses of radial growth of Larix gmelinii to climate in the Daxing’anling Mountains of northeast China[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3397-3404.]
[18] 杨婧雯, 张秋良, 宋文琦, 等. 大兴安岭兴安落叶松和樟子松径向生长对气候变化的响应差异[J]. 应用生态学报, 2021, 32(10): 3415-3427.
[18] [Yang Jingwen, Zhang Qiuliang, Song Wenqi, et al. Response differences of radial growth of Larix gmelinii and Pinus sylvestris var. mongolica to climate change in Daxing’an Mountains, northeast China[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3415-3427.]
[19] Bao G, Liu Y, Liu N. A tree-ring-based reconstruction of the Yimin River annual runoff in the Hulun Buir region, Inner Mongolia, for the past 135 years[J]. Chinese Science Bulletin, 2012, 57(36): 4765-4775.
[20] Li J, Bai X, Jin Y, et al. Recent intensified runoff variability in the Hailar River Basin during the past two centuries[J]. Journal of Hydrometeorology, 2020, 21(10): 2257-2273.
[21] 徐文铎. 内蒙古白音敖包自然保护区沙地云杉林的基本特征, 存在问题与解决途径[J]. 生态学杂志, 1993, 12(5): 39-44.
[21] [Xu Wenduo. Basic characteristics, existing problems and their solutions for spruce forest on sandland of Baiyinaobao Natural Reserve Inner Mongolia[J]. Chinese Journal of Ecology, 1993, 12(5): 39-44.]
[22] 苑丹阳, 赵慧颖, 李宗善, 等. 伊春地区红松和红皮云杉径向生长对气候变化的响应[J]. 生态学报, 2020, 40(4): 1150-1160.
[22] [Yuan Danyang, Zhao Huiying, Li Zongshan, et al. Radial growth of Pinus koraiensis and Picea koraiensis response to climate change in Yichun City, Heilongjiang Province[J]. Acta Ecologica Sinica, 2020, 40(4): 1150-1160.]
[23] Thomas P, Zhang D, Katsuki T, et al. The IUCN red list of threatened species[M]. Gland (Switzerland): IUCN-The World Conservation Union, 2013.
[24] 刘禹, 蔡秋芳, 安芷生, 等. 内蒙古锡林浩特白音敖包1838年以来树轮降水记录[J]. 科学通报, 2003, 48(9): 952-957.
[24] [Liu Yu, Cai Qiufang, An Zhisheng, et al. Tree-ring precipitation records from Baiyinaobao, Inner Mongolia since AD 1838[J]. Chinese Science Bulletin, 2003, 48(9): 952-957.]
[25] 刘云超, 陈立新, 段文标, 等. 沙地云杉林研究述评[J]. 生态学报, 2020, 40(1): 34-42.
[25] [Liu Yunchao, Chen Lixin, Duan Wenbiao, et al. Review of the studies on Picea mongolica forest[J]. Acta Ecologica Sinica, 2020, 40(1): 34-42.]
[26] Stokes M A. An introduction to tree-ring dating[M]. Tucson: University of Arizona Press, 1996.
[27] 何海. 使用WinDENDRO测量树轮宽度及交叉定年方法[J]. 重庆师范大学学报(自然科学版), 2005, 22(4): 39-44.
[27] [He Hai. Measurement of tree-ring width with WinDENDRO and crossdating methods[J]. Journal of Chongqing Normal University (Natural Science Edition), 2005, 22(4): 39-44.]
[28] Mcbride J R. Analysis of tree rings and fire scars to establish fire history[J]. Tree-ring Bulletin, 1983(43): 51-67.
[29] Cook E R, Holmes R L. Users manual for program ARSTAN[M]. Tucson: Laboratory of Tree-ring Research, University of Arizona, 1986.
[30] Cook E R, Briffa K R, Jones P D. Spatial regression methods in dendroclimatology: A review and comparison of two techniques[J]. International Journal of Climatology, 1994, 14(4): 379-402.
[31] Wigley T M L, Briffa K R, Jones P D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology[J]. Journal of Applied Meteorology and Climatology, 1984, 23(2): 201-213.
[32] Hughes M K, Kelly P M, Pilcher J R, et al. Climate from tree rings[M]. Cambridge: Cambridge University Press, 1982.
[33] Cook E R, Meko D M, Stahle D W, et al. Drought reconstructions for the continental United States[J]. Journal of Climate, 1999, 12(4): 1145-1162.
[34] Blasing T J, Solomon A M, Duvick D N. Response functions revisited[J]. Tree-ring Bulletin, 1984(44): 1-15.
[35] Torrence C, Compo G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1): 61-78.
[36] 刘可祥, 张同文, 张瑞波, 等. 伊犁山区雪岭云杉(Picea schrenkiana)不同树干高度树木径向生长特征及其对气候响应[J]. 干旱区地理, 2022, 45(4): 1010-1021.
[36] [Liu Kexiang, Zhang Tongwen, Zhang Ruibo, et al. Characteristics of radial growth at different trunk heights of Picea schrenkiana and its climate response in the mountainous area of the Ili Region[J]. Arid Land Geography, 2022, 45(4): 1010-1021.]
[37] Liu Y, Wang C, Hao W, et al. Tree-ring-based annual precipitation reconstruction in Kalaqin, Inner Mongolia for the last 238 years[J]. Chinese Science Bulletin, 2011, 56(28): 2995-3002.
[38] Labat D. Wavelet analysis of the annual discharge records of the world’s largest rivers[J]. Advances in Water Resources, 2008, 31(1): 109-117.
[39] Li W, Jiang Y, Dong M, et al. Diverse responses of radial growth to climate across the southern part of the Asian boreal forests in northeast China[J]. Forest Ecology and Management, 2020, 458: 117759, doi: 10.1016/j.foreco.2019.117759.
[40] 梁慧敏, 魏江生, 贺敏, 等. 大兴安岭南段华北落叶松人工林径向生长对气候变化的响应[J]. 温带林业研究, 2019, 2(3): 31-36.
[40] [Liang Huimin, Wei Jiangsheng, He Min, et al. Response of radial growth of Larix principis-rupprechtii plantation to climate change in southern part of Great Xing’an Mountains[J]. Journal of Temperate Forestry Research, 2019, 2(3): 31-36.]
[41] 牛军强, 袁玉江, 张同文, 等. 利用树木年轮重建阿勒泰地区1572—2014年初夏平均温度[J]. 干旱区地理, 2021, 44(1): 27-35.
[41] [Niu Junqiang, Yuan Yujiang, Zhang Tongwen, et al. Reconstruction of early summer temperature during 1572—2014 from tree-rings in the Altay Prefecture[J]. Arid Land Geography, 2021, 44(1): 27-35.]
[42] 张瑞波, 袁玉江, 魏文寿, 等. 树轮记录的吉尔吉斯斯坦东部过去百年干湿变化[J]. 干旱区地理, 2013, 36(4): 691-699.
[42] [Zhang Ruibo, Yuan Yujiang, Wei Wenshou, et al. Changes of wet and dry in the past hundred years in eastern Kyrgyzstan by tree-ring[J]. Arid Land Geography, 2013, 36(4): 691-699.]
[43] D’Arrigo R, Wilson R. On the Asian expression of the PDO[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2006, 26(12): 1607-1617.
[44] Hoyt D V, Hoyt D W, Schatten K H, et al. The role of the sun in climate change[M]. Oxford: Oxford University Press, 1997.
[45] 徐国昌, 姚辉, 李珊. 中国干旱-半干旱区当代气候变化[J]. 第四纪研究, 1997(2): 105-114.
[45] [Xu Guochang, Yao Hui, Li Shan. Contemporary climate change in arid and semi-arid areas of China[J]. Quaternary Research, 1997(2): 105-114.]
[46] 沈建国. 中国气象灾害大典·内蒙古卷[M]. 北京: 气象出版社, 2008.
[46] [Shen Jianguo. China meteorological disaster encyclopedia: Inner Mongolia volume[M]. Beijing: China Meteorological Press, 2008.]
文章导航

/