气候与水文

黄河源区夏季地表温度变化研究

  • 唐太斌 ,
  • 周保 ,
  • 金晓媚 ,
  • 魏赛拉加 ,
  • 马涛 ,
  • 张永艳
展开
  • 1.青海省地质环境监测总站,青海 西宁 810008
    2.中国地质大学(北京)水资源与环境学院,北京 100083
唐太斌(1995-),男,工程师,主要从事冰川冻土等方面的研究. E-mail: 2435729762@qq.com

收稿日期: 2022-10-14

  修回日期: 2022-12-08

  网络出版日期: 2023-09-21

基金资助

青海省科技厅应用基础研究项目(2021-ZJ-T08)

Change of surface temperature in the source area of the Yellow River in summer

  • Taibin TANG ,
  • Bao ZHOU ,
  • Xiaomei JIN ,
  • Sailajia WEI ,
  • Tao MA ,
  • Yongyan ZHANG
Expand
  • 1. Qinghai Geological Environmental Monitoring Station, Xining 810008, Qinghai, China
    2. China University of Geosciences Beijing, School of Water Resources and Environment, Beijing 100083, China

Received date: 2022-10-14

  Revised date: 2022-12-08

  Online published: 2023-09-21

摘要

利用较高空间分辨率的Landsat卫星数据,以覃志豪单窗算法反演黄河源区1990—2018年(间隔3~5 a)的夏季(7月或8月)地表温度,并对反演结果进行相关性分析。结果表明:(1)黄河源区夏季地表温度平均值与MODIS地表温度产品的平均值相关系数不高,约为0.5,主要原因是Landsat数据与MODIS产品的空间分辨率不一致。(2)水体的地表温度基本保持不变,其他地物的地表温度均呈现上升趋势,冰川的地表温度升高最快。(3)黄河源区各年份地表温度与高程存在明显的负相关关系,相关系数平均值为-0.65。(4)空间上,黄河源区地表温度值与土壤湿度值的空间分布存在负相关关系。(5)在气候因素中,降水与地表温度存在明显的负相关关系,其相关系数小于-0.5的区域约占整个源区面积的70%。

本文引用格式

唐太斌 , 周保 , 金晓媚 , 魏赛拉加 , 马涛 , 张永艳 . 黄河源区夏季地表温度变化研究[J]. 干旱区地理, 2023 , 46(8) : 1250 -1259 . DOI: 10.12118/j.issn.1000-6060.2022.522

Abstract

Using Landsat satellite data with high spatial resolution, the Qin Zhihao mono window algorithm was used to retrieve the summer (July or August) surface temperature in the source area of the Yellow River from 1990 to 2018 (with an interval of 3-5 years), and correlation analysis was conducted on the retrieval results. The results show that: (1) The correlation coefficient between the average retrieved surface temperature and the average MODIS surface temperature product is not high, about 0.5, mainly due to the inconsistent spatial resolution between Landsat data and MODIS products. (2) The surface temperature of water remains basically unchanged, while the surface temperature of other features shows an upward trend, with glaciers experiencing the fastest increase in surface temperature. (3) There is a significant negative correlation between surface temperature and elevation in the source area of the Yellow River in various years, with an average correlation coefficient of -0.65. (4) In terms of space, there is a negative correlation between the spatial distribution of surface temperature values and soil moisture values in the source area of the Yellow River. (5) Among climate factors, there is a significant negative correlation between precipitation and surface temperature, with regions with a correlation coefficient less than -0.5 accounting for 70% of the entire source area.

参考文献

[1] 翟俊, 山发寿, 仝彩荣, 等. 基于MODIS数据的青海湖流域地表温度反演研究[J]. 盐湖研究, 2009, 17(4): 14-21.
[1] [Zhai Jun, Shan Fashou, Tong Cairong, et al. Study on land surface temperature retrieval of Qinghai Lake Basin based on MODIS data[J]. Journal of Salt Lake Research, 2009, 17(4): 14-21.]
[2] 王思维, 易桂花, 高雅萍, 等. 三江源地区基于MODIS数据地表温度与土地覆盖定量关系研究[J]. 测绘与空间地理信息, 2014, 37(2): 56-61.
[2] [Wang Siwei, Yi Guihua, Gao Yaping, et al. The research of quantitative relationship between land surface temperature and land cover in Three-River Source Region based on MODIS data[J]. Geomatics & Spatial Information Technology, 2014, 37(2): 56-61.]
[3] 李欣, 张佳华, 张文忠, 等. 遥感反演地表温度的研究进展[C]//中国气象学会2007年年会生态气象业务建设与农业气象灾害预警分会场论文集. 北京: 中国气象学会, 2007: 72-80.
[3] [Li Xin, Zhang Jiahua, Zhang Wenzhong, et al. The research progress of remote sensing inversion of surface temperature[C]//Proceedings of the Ecological Meteorological Business Construction and Agrometeorological Disaster Warning Branch of the 2007 Annual Meeting of the Chinese Meteorological Society. Beijing: Chinese Meteorological Society, 2007: 72-80.]
[4] 覃志豪, Zhang Minghua, Arnon Karnieli, 等. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报, 2001, 56(4): 456-466.
[4] [Qin Zhihao, Zhang Minghua, Arnon Karnieli, et al. Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data[J]. Acta Geographica Sinica, 2001, 56(4): 456-466.]
[5] 毛克彪, 覃志豪, 刘伟, 等. 用MODIS影像和单窗算法反演环渤海地区的地表温度[J]. 测绘与空间地理信息, 2004, 27(6): 23-25.
[5] [Mao Kebiao, Qin Zhihao, Liu Wei, et al. Retrieval of LST in Bohai Sea rim region by mono-window algorithm and MODIS image[J]. Geomatics & Spatial Information Technology, 2004, 27(6): 23-25.]
[6] 毛克彪, 覃志豪, 徐斌, 等. 针对ASTER数据的单窗算法[J]. 测绘学院学报, 2005, 22(1): 40-42.
[6] [Mao Kebiao, Qin Zhihao, Xu Bin, et al. Method for land surface temperature retrieval from ASTER data[J]. Geomatics and Information Science of Wuhan University, 2005, 22(1): 40-42.]
[7] 甘海洪, 金晓媚, 张绪财, 等. 三江源区蒸散量的时空分布特征[J]. 现代地质, 2021, 35(3): 665-674.
[7] [Gan Haihong, Jin Xiaomei, Zhang Xucai, et al. Temporal and spatial distribution of evapotranspiration in the Sanjiangyuan region[J]. Geoscience, 2021, 35(3): 665-674.]
[8] 郑子彦, 吕美霞, 马柱国. 黄河源区气候水文和植被覆盖变化及面临问题的对策建议[J]. 中国科学院院刊, 2020, 35(1): 61-72.
[8] [Zheng Ziyan, Lü Meixia, Ma Zhuguo. Climate, hydrology, and vegetation coverage changes in source region of Yellow River and countermeasures for challenges[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(1): 61-72.]
[9] 程慧艳, 王根绪, 王一博, 等. 黄河源区不同植被类型覆盖下季节冻土冻融过程中的土壤温湿空间变化[J]. 兰州大学学报(自然科学版), 2008, 44(2): 15-21.
[9] [Cheng Huiyan, Wang Genxu, Wang Yibo, et al. Variations of soil temperature and water moisture of seasonal frozen soil with different vegetation coverages in the source region of the Yellow River, China[J]. Journal of Lanzhou University (Natural Sciences Edition), 2008, 44(2): 15-21.]
[10] 柳菲. 地表比辐射率遥感反演方法研究[D]. 武汉: 湖北大学, 2012.
[10] [Liu Fei. Researching of remote sensing inversion method on land surface emissivity[D]. Wuhan: Hubei University, 2012.]
[11] 李玉毛, 何涛, 刘冬. 一元线性回归方法的理论及其应用[J]. 赤峰学院学报(自然科学版), 2017, 33(15): 1-2.
[11] [Li Yumao, He Tao, Liu Dong. The theory and application of univariate linear regression method[J]. Journal of Chifeng University (Natural Science Edition), 2017, 33(15): 1-2.]
[12] 徐维超. 相关系数研究综述[J]. 广东工业大学学报, 2012, 29(3): 12-17.
[12] [Xu Weichao. A review on correlation coefficients[J]. Journal of Guangdong University of Technology, 2012, 29(3): 12-17.]
[13] 张微, 程武学, 倪静. 地表温度反演的算法综述[J]. 绿色科技, 2014(12): 220-222.
[13] [Zhang Wei, Cheng Wuxue, Ni Jing. Review of the algorithms of land surface temperature retrieval[J]. Journal of Green Science and Technology, 2014(12): 220-222.]
[14] 朱贞榕, 程朋根, 桂新, 等. 地表温度反演的算法综述[J]. 测绘与空间地理信息, 2016, 39(5): 70-75.
[14] [Zhu Zhenrong, Cheng Penggen, Gui Xin, et al. Overview of surface temperature inversion algorithm[J]. Geomatics & Spatial Information Technology, 2016, 39(5): 70-75.]
[15] 金点点, 宫兆宁. 基于Landsat系列数据地表温度反演算法对比分析——以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[15] [Jin Diandian, Gong Zhaoning. Algorithms comparison of land surface temperature retrieval from Landsat series data: A case study in Qiqihar, China[J]. Remote Sensing Technology and Application, 2018, 33(5): 830-841.]
[16] Cuenca J, Sobrino J A. Experimental measurements for studying angular and spectral variation of thermal infrared emissivity[J]. Applied Optics, 2004, 43(23): 4598-4602.
[17] Li Z L, Zhang R, Sun X, et al. Experimental system for the study of the directional thermal emission of natural surfaces[J]. International Journal of Remote Sensing, 2004, 25(1): 195-204.
[18] 陈云浩, 宫阿都, 李京. 基于地表辐射亮温标准化的城市热环境遥感研究——以上海市为例[J]. 中国矿业大学学报, 2006, 35(4): 462-467.
[18] [Chen Yunhao, Gong Adu, Li Jing. Study of urban thermal environment using remote sensing data based on radiation normalization[J]. Journal of China University of Mining & Technology, 2006, 35(4): 462-467.]
[19] 宋挺, 段峥, 刘军志, 等. 基于Landsat-8数据和劈窗算法的地表温度反演及城市热岛效应研究[J]. 环境监控与预警, 2014, 6(5): 4-14.
[19] [Song Ting, Duan Zheng, Liu Junzhi, et al. Land surface temperature retrieval from Landsat-8 data using split-window algorithm and its application on the study of urban heat island effect[J]. Environmental Monitoring and Forewarning, 2014, 6(5): 4-14.]
[20] 高懋芳, 覃志豪, 徐斌, 等. 用MODIS数据反演地表温度的基本参数估计方法[J]. 干旱区研究, 2007, 24(1): 113-119.
[20] [Gao Maofang, Qin Zhihao, Xu Bin, et al. Estimation of the basic parameters for deriving surface temperature from MODIS data[J]. Arid Zone Research, 2007, 24(1): 113-119.]
[21] 陈双远, 许方宇, 王飞翔, 等. 中红外大气背景辐射测量系统及误差分析[J]. 光学学报, 2019, 39(3): 9-18.
[21] [Chen Shuangyuan, Xu Fangyu, Wang Feixiang, et al. Measurement system and error analysis of mid-infrared atmospheric background radiation[J]. Acta Optica Sinica, 2019, 39(3): 9-18.]
[22] 高懋芳, 覃志豪, 刘三超. MODIS数据反演地表温度的参数敏感性分析[J]. 遥感信息, 2005(6): 3-6.
[22] [Gao Maofang, Qin Zhihao, Liu Sanchao. Sensitivity analysis of retrieving land surface temperature from moderate resolution imaging spectroradiometer (MODIS)[J]. Remote Sensing Information, 2005(6): 3-6.]
[23] 黄妙芬, 邢旭峰, 王培娟, 等. 利用LANDSAT/TM热红外通道反演地表温度的三种方法比较[J]. 干旱区地理, 2006, 29(1): 132-137.
[23] [Huang Miaofen, Xing Xufeng, Wang Peijuan, et al. Comparison between three different methods of retrieving surface temperature from Landsat TM thermal infrared band[J]. Arid Land Geography, 2006, 29(1): 132-137.]
[24] 王倩倩, 覃志豪, 王斐. 基于多源遥感数据反演地表温度的单窗算法[J]. 地理与地理信息科学, 2012, 28(3): 24-26, 62, 113.
[24] [Wang Qianqian, Qin Zhihao, Wang Fei. Monor-window algorithm for retrieving land surface temperature based on multi-source remote sensing data[J]. Geography and Geo-information Science, 2012, 28(3): 24-26, 62, 113.]
[25] 宋彩英, 覃志豪, 王斐. 基于Landsat TM的地表温度分解算法对比[J]. 国土资源遥感, 2015, 27(1): 172-177.
[25] [Song Caiying, Qin Zhihao, Wang Fei. Comparison of two models for decomposition of land surface temperature image using Landsat TM data[J]. Remote Sensing for Natural Resources, 2015, 27(1): 172-177.]
[26] 刘晶. 基于Landsat-8数据的地表温度反演算法对比[D]. 西安: 长安大学, 2018.
[26] [Liu Jing. Comparison of retrieval algorithms for land surface temperature from Landsat-8 imagery[D]. Xi’an: Chang’an University, 2018.]
[27] 覃志豪, Li Wenjuan, Zhang Minghua, 等. 单窗算法的大气参数估计方法[J]. 国土资源遥感, 2003, 15(2): 37-43.
[27] [Qin Zhihao, Li Wenjuan, Zhang Minghua, et al. Estimating of the essential atmospheric parametersof mono window algorithm for land surface temperature retrieval from Landsat TM6[J]. Remote Sensing for Natural Resources, 2003, 15(2): 37-43.]
[28] Wan Z M, Li Z L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[J]. Transactions on Geoscience and Remote Sensing, 1997, 35(4): 980-996.
[29] 程丹妮, 王颖琪, 程勇翔, 等. 新疆典型沙漠和绿洲植被-水汽-地表温度相关性分析[J]. 干旱区地理, 2022, 45(2): 456-466.
[29] [Cheng Danni, Wang Yingqi, Cheng Yongxiang, et al. Vegetation-water vapor-land surface temperature correlation analysis of typical deserts and oases in Xinjiang[J]. Arid Land Geography, 2022, 45(2): 456-466.]
[30] 杜军, 高佳佳, 王挺, 等. 2007—2020年西藏草面温度时空分布特征[J]. 干旱区地理, 2022, 45(4): 1103-1113.
[30] [Du Jun, Gao Jiajia, Wang Ting, et al. Spatial and temporal distribution of the grass surface temperature in Tibet from 2007 to 2020[J]. Arid Land Geography, 2022, 45(4): 1103-1113.]
文章导航

/