气候与水文

蒙古国冬春季气候非对称变暖及其对植被返青期和春季NDVI的影响

  • 张港栋 ,
  • 包刚 ,
  • 黄晓君 ,
  • 元志辉 ,
  • 温都日娜
展开
  • 1.内蒙古师范大学地理科学学院,内蒙古 呼和浩特 010022
    2.内蒙古师范大学内蒙古自治区遥感与地理信息系统重点实验室,内蒙古 呼和浩特 010022
张港栋(1997-),男,硕士研究生,主要从事资源环境与遥感研究. E-mail: zgdong9797@163.com

收稿日期: 2022-12-31

  修回日期: 2023-03-15

  网络出版日期: 2023-09-21

基金资助

内蒙古自治区科技计划项目(2021GG0183);内蒙古高校青年科技英才支持计划项目(NJYT22030);内蒙古自治区自然科学基金项目(2021MS04014)

Asymmetrical warming in winter and spring and its effect on start of growing season and spring NDVI in Mongolia

  • Gangdong ZHANG ,
  • Gang BAO ,
  • Xiaojun HUANG ,
  • Zhihui YUAN ,
  • Durina WEN
Expand
  • 1. College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
    2. Inner Mongolia Key Laboratory of Remote Sensing & Geography Information System, Hohhot 010022, Inner Mongolia, China

Received date: 2022-12-31

  Revised date: 2023-03-15

  Online published: 2023-09-21

摘要

基于2001—2020年NDVI和EVI两种遥感植被指数及蒙古国60个气象站点的气温和降水数据,利用累积植被指数的Logistic曲线曲率极值法和动态阈值法提取蒙古国植被返青期,并结合偏相关分析方法探讨二者与冬春季昼夜气温非对称变化之间的关系。结果表明:(1)近20 a来,最高气温在冬春季的变暖速率分别为0.07 ℃·a-1、0.15 ℃·a-1P<0.05,R2=0.33),最低气温在冬春季的变化速率分别为-0.01 ℃·a-1、0.04 ℃·a-1,冬春季气温日较差的变化速率分别为0.08 ℃·a-1、0.11 ℃·a-1P<0.05,R2=0.52),存在明显的季节性差异。(2)蒙古国植被返青期对冬春季气候变暖的季节性响应是非对称的,冬季最高气温和气温日较差的影响大,而春季则是最低气温影响大,且均表现为负相关。(3)蒙古国气候变暖对植被NDVI产生的非对称影响主要表现在春季,即春季最高气温和气温日较差对植被NDVI主要表现为负相关,而春季最低气温对植被NDVI主要表现为正相关。研究结果可为进一步了解全球气候变暖背景下植被春季物候及植被后期生长的季节性影响提供重要参考价值。

本文引用格式

张港栋 , 包刚 , 黄晓君 , 元志辉 , 温都日娜 . 蒙古国冬春季气候非对称变暖及其对植被返青期和春季NDVI的影响[J]. 干旱区地理, 2023 , 46(8) : 1238 -1249 . DOI: 10.12118/j.issn.1000-6060.2022.686

Abstract

Based on the normalized difference vegetation index (NDVI) and enhanced vegetation index obtained from remote sensing and on temperature and precipitation data from 60 meteorological stations in Mongolia from 2001 to 2020, the logistic curve method and dynamic threshold method of the cumulative vegetation index were used to extract the vegetation green-up period in Mongolia. Partial correlation analysis was used to explore the relationship between the vegetation green-up period and the asymmetric changes in diurnal temperature in winter and spring. The results were as follows: (1) In the past 20 years, the warming rates for highest winter and spring temperatures were 0.07 ℃·a−1 and 0.15 ℃·a−1 (P<0.05, R2=0.33) respectively, while the change rates of the lowest winter and spring temperatures were −0.01 ℃·a−1 and 0.04 ℃·a−1 respectively. The change rate of the winter and spring diurnal temperature ranges were 0.08 ℃·a−1 and 0.11 ℃·a−1 (P<0.05, R2=0.52) respectively, showing clear seasonal differences. (2) The seasonal response of the start of the growing season to winter and spring climate warming is asymmetric, with the highest temperature and diurnal temperature range having a greater impact in winter, while the lowest temperature has a greater impact in spring; both show negative correlations. (3) The asymmetric impact of climate warming on NDVI in Mongolia is mainly manifested in spring. The highest spring temperature and spring diurnal temperature range have a mainly negative correlation with NDVI, while the lowest spring temperature has a mainly positive correlation with NDVI. This study provides an important reference in the study of the seasonal effects of climate warming on vegetation phenology and late-stage growth.

参考文献

[1] Wu C Y, Hou X H, Peng D L, et al. Land surface phenology of China’s temperate ecosystems over 1999—2013: Spatial-temporal patterns, interaction effects, covariation with climate and implications for productivity[J]. Agricultural and Forest Meteorology, 2016, 216: 177-187.
[2] Zhang G L, Zhang Y J, Dong J W, et al. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011[J]. Proceedings of the National Academy of Sciences, 2013, 110(11): 4309-4314.
[3] Piao S L, Friedlingstein P, Ciais P, et al. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades[J]. Global Biogeochemical Cycles, 2007, 21(3): 128911666, doi: 10.1029/2006gb002888.
[4] 赵杰, 杜自强, 张红, 等. 中国季节性昼夜增温的不对称性及其对植被活动的影响[J]. 生态学报, 2018, 38(11): 3909-3919.
[4] [Zhao Jie, Du Ziqiang, Zhang Hong, et al. Asymmetric seasonal variability in day-and night-time warming and their effects on vegetation activity in China[J]. Acta Ecologica Sinica, 2018, 38(11): 3909-3919.]
[5] He G X, Li Z L. Asymmetry of daytime and nighttime warming in typical climatic zones along the eastern coast of China and its influence on vegetation activities[J]. Remote Sensing, 2020, 12(21): 3064, doi: 10.3390/rs12213604.
[6] Muhammad R I A, Wei G B, Ding G H, et al. Yield and quality responses of two indica rice hybrids to post-anthesis asymmetric day and night open-field warming in lower reaches of Yangtze River delta[J]. Field Crops Research, 2014, 156: 231-241.
[7] IPCC. Climate Change 2022: Impacts, adaptation, and vulnerability[R]. Cambridge: Cambridge University Press, 2022.
[8] Yu H Y, Luedeling E, Xu J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2010, 107(51): 22151-22156.
[9] 张港栋, 包刚, 元志辉, 等. 2001—2020年蒙古高原昼夜非对称变暖对植被返青期的影响[J]. 干旱区地理, 2023, 46(5): 700-710.
[9] [Zhang Gangdong, Bao Gang, Yuan Zhihui, et al. Effects of asymmetric warming of daytime and nighttime on the start of growing season on the Mongolian Plateau from 2001 to 2020[J]. Arid Land Geography, 2023, 46(5): 700-710.]
[10] Xu L, Myneni R B, Chapin Iii F S, et al. Temperature and vegetation seasonality diminishment over northern lands[J]. Nature Climate Change, 2013, 3(6): 581-586.
[11] Tan J G, Piao S L, Chen A, et al. Seasonally different response of photosynthetic activity to daytime and night-time warming in the Northern Hemisphere[J]. Global Change Biology, 2015, 21(1): 377-387.
[12] Shen M G, Piao S L, Chen X Q, et al. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau[J]. Global Change Biology, 2016, 22(9): 3057-3066.
[13] Bao G, Qin Z H, Bao Y H, et al. NDVI-based long-term vegetation dynamics and its response to climatic change in the Mongolian Plateau[J]. Remote Sensing, 2014, 6(9): 8337-8358.
[14] 包刚, 包玉龙, 阿拉腾图娅, 等. 1982—2011年蒙古高原植被物候时空动态变化[J]. 遥感技术与应用, 2017, 32(5): 866-874.
[14] [Bao Gang, Bao Yulong, A Latengtuya, et al. Spatio-temporal dynamics of vegetation phenology in the Mongolian Plateau during 1982—2011[J]. Remote Sensing Technology and Application, 2017, 32(5): 866-874.]
[15] Bao G, Alateng T Y, Bayarsaikhan S, et al. Variations and climate constraints of terrestrial net primary productivity over Mongolia[J]. Quaternary International, 2020, 537: 112-125.
[16] 秦福莹, 那音太. 近20年蒙古国植被春季返青期时空变化特征[J]. 赤峰学院学报(自然科学版), 2023, 39(1): 1-4.
[16] [Qin Fuying, Na Yintai. Temporal and spatial changes of spring regreening period in Mongolia in recent 20 years[J]. Journal of Chifeng University(Natural Science Edition), 2023, 39(1): 1-4.]
[17] Fernandez-Gimenez M E, Allen-Diaz B. Testing a non-equilibrium model of rangeland vegetation dynamics in Mongolia[J]. Journal of Applied Ecology, 1999, 36(6): 871-885.
[18] 王卷乐, 程凯, 祝俊祥, 等. 蒙古国30米分辨率土地覆盖产品研制与空间格局分析[J]. 地球信息科学学报, 2018, 20(9): 1263-1273.
[18] [Wang Juanle, Cheng Kai, Zhu Junxiang, et al. Development and pattern analysis of Mongolian land cover data products with 30 meters resolution[J]. Journal of Geo-information Science, 2018, 20(9): 1263-1273.]
[19] Hugji L T, Bao G, Chen J Q, et al. Modifying the maximal light-use efficiency for enhancing predictions of vegetation net primary productivity on the Mongolian Plateau[J]. International Journal of Remote Sensing, 2020, 41(10): 3740-3760.
[20] 元志辉, 萨楚拉, 银山. 基于MODIS植被指数的浑善达克沙地植被物候变化[J]. 中国环境科学, 2021, 41(11): 5254-5263.
[20] [Yuan Zhihui, Sa Chula, Yin Shan. Research on vegetation phenological changes in the Otindag Sandy Land based on MODIS NDVI and EVI[J]. China Environmental Science, 2021, 41(11): 5254-5263.]
[21] 包刚, 包玉海, 覃志豪, 等. 近10年蒙古高原植被覆盖变化及其对气候的季节响应[J]. 地理科学, 2013, 33(5): 613-621.
[21] [Bao Gang, Bao Yuhai, Qin Zhihao, et al. Vegetation cover changes in Mongolian Plateau and its response to seasonal climate changes in recent 10 years[J]. Scientia Geographica Sinica, 2013, 33(5): 613-621.]
[22] 刘宪锋, 朱秀芳, 潘耀忠, 等. 1982—2012年中国植被覆盖时空变化特征[J]. 生态学报, 2015, 35(16): 5331-5342.
[22] [Liu Xianfeng, Zhu Xiufang, Pan Yaozhong, et al. Spatiotemporal changes in vegetation coverage in China during 1982—2012[J]. Acta Ecologica Sinica, 2015, 35(16): 5331-5342.]
[23] Piao S L, Cui M D, Chen A P, et al. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau[J]. Agricultural and Forest Meteorology, 2011, 151(12): 1599-1608.
[24] 穆少杰, 李建龙, 陈奕兆, 等. 2001—2010年内蒙古植被覆盖度时空变化特征[J]. 地理学报, 2012, 67(9): 1255-1268.
[24] [Mu Shaojie, Li Jianlong, Chen Yizhao, et al. Spatial differences of variations of vegetation coverage in Inner Mongolia during 2001—2010[J]. Acta Geographica Sinica, 2012, 67(9): 1255-1268.]
[25] Hou X H, Gao S, Niu Z, et al. Extracting grassland vegetation phenology in north China based on cumulative Spot-Vegetation NDVI data[J]. International Journal of Remote Sensing, 2014, 35(9): 3316-3330.
[26] Piao S L, Fang J J Y, Zhou L M, et al. Variations in satellite-derived phenology in China’s temperate vegetation[J]. Global Change Biology, 2006, 12(4): 672-685.
[27] Bao G, Chen J Q, Chopping M, et al. Dynamics of net primary productivity on the Mongolian Plateau: Joint regulations of phenology and drought[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 81: 85-97.
[28] 张戈丽, 徐兴良, 周才平, 等. 近30年来呼伦贝尔地区草地植被变化对气候变化的响应[J]. 地理学报, 2011, 66(1): 47-58.
[28] [Zhang Geli, Xu Xingliang, Zhou Caiping, et al. Responses of grassland vegetation to climatic variations on different temporal scales in Hulun Buir grassland in the past 30 years[J]. Scientia Geographica Sinica, 2011, 66(1): 47-58.]
[29] Shen M G, Tang Y H, Chen J Q, et al. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2011, 151(12): 1711-1722.
[30] Vitasse Y, Lenz A, Korner C. The interaction between freezing tolerance and phenology in temperate deciduous trees[J]. Frontiers in Plant Science, 2014, 5: 541, doi: 10.3389/fpls.2014.00541.
[31] Pangtey Y P S, Rawal R, Bankoti N S, et al. Phenology of high-altitude plants of Kumaun in central Himalaya, India[J]. International Journal of Biometeorology, 1990, 34(2): 122-127.
[32] Piao S L, Tan J G, Chen A P, et al. Leaf onset in the northern hemisphere triggered by daytime temperature[J]. Nature Communications, 2015, 6(1): 6911, doi: 10.1038/ncomms7911.
[33] Yang Z L, Jiang L, Su F L, et al. Nighttime warming enhances drought resistance of plant communities in a temperate steppe[J]. Scientific Reports, 2016, 6(1): 23267, doi: 10.1038/srep23267.
文章导航

/