收稿日期: 2022-10-20
修回日期: 2022-12-01
网络出版日期: 2023-08-03
基金资助
新疆维吾尔自治区自然科学基金项目(2021D01E02);中国科学院重点部署项目(ZDRWZS-2019-3)
Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: A case of Xinjiang
Received date: 2022-10-20
Revised date: 2022-12-01
Online published: 2023-08-03
水分利用效率(WUE)通过联系陆地生态系统碳水循环过程,成为理解植被生态系统对气候变化响应的一个重要指标。结合1990—2020年的遥感影像与再分析数据产品,基于光能利用效率(CASA)模型反演净初级生产力(NPP)和实际蒸散发(ET)系统分析了1990—2020年新疆植被WUE的时空变化规律,讨论并探究了影响植被WUE变化的驱动力因子。结果表明:过去31 a新疆植被WUE整体呈下降趋势,但以2003年为转折点,转折点之前呈波动下降趋势,之后呈波动上升趋势。31 a来新疆植被WUE的空间格局没有发生明显变化,高值集中在平原区,特别是绿洲及荒漠-绿洲过渡带,低值集中在山区。通过分析发现,新疆植被WUE变化主要归因于降水、蒸散发及水汽压等气候因子影响。研究结果对于筛选出结构合理、节水性强、生产力高的人工和天然植被结构类型,实现干旱和半干旱地区植被建设的可持续发展具有参考价值,特别是对新疆生态系统安全与农牧业可持续发展具有现实意义。
高晓宇 , 郝海超 , 张雪琪 , 陈亚宁 . 中国西北干旱区植被水分利用效率变化对气象要素的响应——以新疆为例[J]. 干旱区地理, 2023 , 46(7) : 1111 -1120 . DOI: 10.12118/j.issn.1000-6060.2022.545
Water use efficiency (WUE) links the processes of carbon and water cycling in terrestrial ecosystems and is a crucial indicator for understanding the response of vegetated ecosystems to climate change. In this study, the spatial and temporal patterns of vegetation WUE in Xinjiang of China from 1990 to 2020 were systematically analyzed based on the Carnegie-Ames-Stanford approach model inversions of net primary productivity and evapotranspiration (ET). In this method, remote sensing images and reanalysis data products from past 31 years were combined. The results revealed that vegetation WUE in Xinjiang has been decreasing for 31 years and 2003 was a pivotal year with a fluctuating downward trend before the turning point and a subsequent fluctuating upward trend. The spatial pattern of vegetation WUE in Xinjiang has not changed considerably over the past 31 years, with high values concentrated in plains, especially in the oasis and desert-oasis transition zones, and low values concentrated in mountains. The results revealed that the changes in vegetation WUE in Xinjiang can be attributed to the influence of climatic factors such as precipitation, evapotranspiration and water vapor pressure. This study can be used as a reference for screening artificial and natural vegetation structure types with reasonable structure, high water conservation and productivity, and for achieving the sustainable development of vegetation construction in arid and semiarid regions, especially for the ecosystem security and sustainable development of agriculture and animal husbandry in Xinjiang.
[1] | Abd El-Mageed T A, Semida W M, Rady M M. Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation[J]. Agricultural Water Management, 2017, 193: 46-54. |
[2] | 郝海超, 郝兴明, 花顶, 等. 2000—2018年中亚五国水分利用效率对气候变化的响应[J]. 干旱区地理, 2021, 44(1): 1-14. |
[2] | [Hao Haichao, Hao Xingming, Hua Ding, et al. Response of water use efficiency to climate change in five Central Asian countries from2000 to 2018[J]. Arid Land Geography, 2021, 44(1): 1-14.] |
[3] | Jin N, Ren W, Tao B, et al. Effects of water stress on water use efficiency of irrigated and rainfed wheat in the Loess Plateau, China[J]. Science of the Total Environment, 2018, 642: 1-11. |
[4] | 张桂玲, 李艳琴, 罗绪强, 等. 季节性干旱下喀斯特次生林不同树种水分利用效率变化[J]. 地球与环境, 2021, 49(1): 25-31. |
[4] | [Zhang Guiling, Li Yanqin, Luo Xuqiang, et al. Change of water use efficiency of different species in karst secondary forest under seasonal drought[J]. Earth and Environment, 2021, 49(1): 25-31.] |
[5] | Lu X L, Zhuang Q L. Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data[J]. Remote Sensing of Environment, 2010, 114(9): 1924-1939. |
[6] | Zhao M S, Heinsch F A, Nemani R R, et al. Improvements of the MODIS terrestrial gross and net primary production global data set[J]. Remote Sensing of Environment, 2005, 95(2): 164-176. |
[7] | Mu Q Z, Zhao M S, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1781-1800. |
[8] | van Soest H L, den Elzen M G, van Vuuren D P. Net-zero emission targets for major emitting countries consistent with the Paris Agreement[J]. Nature Communications, 2021, 12: 2140, doi: 10.1038/s41467-021-22294-x. |
[9] | Cheng L, Zhang L, Wang Y P, et al. Recent increases in terrestrial carbon uptake at little cost to the water cycle[J]. Nature Communications, 2017, 8: 110, doi: 10.1038/s41467-017-00114-5. |
[10] | Huang Y L, Chen L D, Fu B J, et al. The wheat yields and water-use efficiency in the Loess Plateau: Straw mulch and irrigation effects[J]. Agricultural Water Management, 2005, 72(3): 209-222. |
[11] | Hao H C, Li Z, Chen Y N, et al. Recent variations in soil moisture use efficiency (SMUE) and its influence factors in Asian drylands[J]. Journal of Cleaner Production, 2022, 373: 133860, doi: 10.1016/j.jclepro.2022.133860. |
[12] | 刘伟, 姜逢清, 李小兰. 新疆气候变化的适应能力时空演化特征[J]. 干旱区研究, 2017, 34(3): 531-540. |
[12] | [Liu Wei, Jiang Fengqing, Li Xiaolan. Spatiotemporal evolution of adaptive capacity to climate change in Xinjiang[J]. Arid Zone Research, 2017, 34(3): 531-540.] |
[13] | Williams J D, Long D S, Reardon C L. Productivity and water use efficiency of intensified dryland cropping systems under low precipitation in Pacific Northwest, USA[J]. Field Crops Research, 2020, 254: 107787, doi: 10.1016/j.fcr.2020.107787. |
[14] | Gianluigi O, Matteo M. Precipitation seasonality promotes acquisitive and variable leaf water-economics traits in southwest Australian granite outcrop species[J]. Biological Journal of the Linnean Society, 2020, 133: 411-417. |
[15] | 裴婷婷, 李小雁, 吴华武, 等. 黄土高原植被水分利用效率对气候和植被指数的敏感性研究[J]. 农业工程学报, 2019, 35(5): 119-125. |
[15] | [Pei Tingting, Li Xiaoyan, Wu Huawu, et al. Sensitivity of vegetation water use efficiency to climate and vegetation index in Loess Plateau, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5): 119-125.] |
[16] | 崔茜琳, 何云玲, 李宗善. 青藏高原植被水分利用效率时空变化及与气候因子的关系[J]. 应用生态学报, 2022, 33(6): 1525-1532. |
[16] | [Cui Xilin, He Yunling, Li Zongshan. Spatial-temporal variation of vegetation water use efficiency and its relationship with climate factors over the Qinghai-Tibet Plateau, China[J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1525-1532.] |
[17] | 陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26. |
[17] | [Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountains, Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 18-26.] |
[18] | Zou J, Ding J L, Welp M, et al. Assessing the response of ecosystem water use efficiency to drought during and after drought events across Central Asia[J]. Sensors, 2020, 20(3): 581, doi: 10.3390/s20030581. |
[19] | Gilbert M E, Hernandez M I. How should crop water-use efficiency be analyzed? A warning about spurious correlations[J]. Field Crops Research, 2019, 235: 59-67. |
[20] | Liu S, Luo G P, Wang H. Temporal and spatial changes in crop water use efficiency in Central Asia from 1960 to 2016[J]. Sustainability, 2020, 12(2): 572, doi: 10.3390/su12020572. |
[21] | Abd El-Mageed T A, Semida W M, Rady M M. Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation[J]. Agricultural Water Management, 2017, 193: 46-54. |
[22] | 刘海桂, 唐旭利, 周国逸, 等. 1981—2000年广东省净初级生产力的时空格局[J]. 生态学报, 2007, 27(10): 4065-4074. |
[22] | [Liu Haigui, Tang Xuli, Zhou Guoyi, et al. Spatial and temporal patterns of net primary productivity in the duration of 1981—2000 in Guangdong, China[J]. Acta Ecologica Sinica, 2007, 27(10): 4065-4074.] |
[23] | 原一荃, 薛力铭, 李秀珍. 基于CASA模型的长江口崇明东滩湿地植被净初级生产力与固碳潜力[J]. 生态学杂志, 2022, 41(2): 334-342. |
[23] | [Yuan Yiquan, Xue Liming, Li Xiuzhen. Net primary productivity and carbon sequestration potential of salt marsh vegetation in Chongming Dongtan of the Yangtze Estuary based on CASA model[J]. Chinese Journal of Ecology, 2022, 41(2): 334-342.] |
[24] | Adams M A, Turnbull T L, Sprent J I, et al. Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency[J]. Proc Natl Acad Sci U S A, 2016, 113(15): 4098-4103. |
[25] | Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925. |
[26] | 李稚, 李玉朋, 李鸿威, 等. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022, 37(1): 37-50. |
[26] | [Li Zhi, Li Yupeng, Li Hongwei, et al. Analysis of drought change and its impact in Central Asia[J]. Advances in Earth Science, 2022, 37(1): 37-50.] |
[27] | Yang J L, Dong J W, Xiao X M, et al. Divergent shifts in peak photosynthesis timing of temperate and alpine grasslands in China[J]. Remote Sensing of Environment, 2019, 233: 111395, doi: 10.1016/j.rse.2019.111395. |
[28] | Liu X F, Feng X M, Fu B J. Changes in global terrestrial ecosystem water use efficiency are closely related to soil moisture[J]. Science of the Total Environment, 2020, 698: 134165, doi: 10.1016/j.scitotenv.2019.134165. |
[29] | Kondratyev K Y, Varotsos C. Atmospheric greenhouse effect in the context of global climate change[J]. Il Nuovo Cimento C, 1995, 18(2): 123-151. |
/
〈 |
|
〉 |