收稿日期: 2022-10-09
修回日期: 2022-12-06
网络出版日期: 2023-08-03
基金资助
国家自然科学基金项目(42130516);中国科学院战略性先导科技专项(A类)(XDA20060201);中国科学院战略性先导科技专项(A类)(XDA19070302);第二次青藏高原综合科学考察研究项目(2019QZKK020102)
Glacier changes on the north slope of Tianshan Mountains in recent 60 years
Received date: 2022-10-09
Revised date: 2022-12-06
Online published: 2023-08-03
从流域尺度揭示天山北坡冰川变化状况,对下游绿洲地区水资源的合理开发利用具有重要意义。基于多源遥感影像提取天山北坡诸河流域近期冰川边界,结合前期发布的冰川编目及ASTER DEM数据,对该区域冰川面积和物质平衡变化特征进行了分析。结果表明:(1)2015年前后天山北坡共计分布冰川10061条,总面积约4855.85±245.86 km2。1960s—2015年天山北坡国内段冰川面积萎缩速率为0.52%·a-1±0.06%·a-1,且近年来呈加速萎缩趋势(0.96%·a-1±0.88%·a-1);1999—2015年天山北坡国外段冰川面积萎缩速率约为0.56%·a-1±0.31%·a-1。(2)2000—2020年天山北坡冰川表面高程变化速率约为-0.57±0.01 m·a-1,冰川物质呈持续亏损态,物质平衡为-0.39±0.04 m w.e.·a-1。(3)天山北坡东、西段冰川面积和物质平衡变化均存在一定的空间差异性,近十几年间,东段各子流域冰川面积萎缩速率和物质亏损速率均相对较大。
杨雪雯 , 王宁练 , 梁倩 , 陈安安 . 近60 a天山北坡冰川变化研究[J]. 干旱区地理, 2023 , 46(7) : 1073 -1083 . DOI: 10.12118/j.issn.1000-6060.2022.509
Understanding glacier changes on the north slope of the Tianshan Mountains on the basin scale is critical for the rational development and use of water resources in downstream oases. The recent glacier boundaries on the north slope of the Tianshan Mountains were obtained based on multisource remote sensing images. Combined with the glacier inventory released earlier and ASTER DEM, changes in the glacier area and mass balance in this region were analyzed. The results revealed that: (1) A total of 10061 glaciers were distributed on the north slope of the Tianshan Mountains around 2015, with a total area of 4855.85±245.86 km2. The glacier area on the north slope of the Tianshan Mountains in China decreased at a rate of 0.52%·a−1±0.06%·a−1 from 1960s to 2015. Furthermore, an accelerated decreasing trend was observed (0.96%·a−1±0.88%·a−1). The glacier area in the foreign part of the north slope of Tianshan Mountains decreased at a rate of 0.56%·a−1±0.31%·a−1 from 1999 to 2015. (2) The change rate of glacier surface elevation on the north slope of Tianshan Mountains from 2000 to 2020 was −0.57±0.01 m·a−1, and the glacier mass balance was −0.39±0.04 m w.e.·a−1. (3) An obvious spatial difference exists in the changes of glacier area and mass balance in the eastern and western parts of the north slope of Tianshan Mountains, and high decreasing rates of glacier area and mass balance were observed in the eastern part.
[1] | 施雅风, 刘时银. 中国冰川对21世纪全球变暖响应的预估[J]. 科学通报, 2000, 45(4): 434-438. |
[1] | [Shi Yafeng, Liu Shiyin. The calculation of Chinese glacier’s response to the globe climatic warming in the 21st century[J]. Chinese Science Bulletin, 2000, 45(4): 434-438.] |
[2] | IPCC. Climate change 2021: The physical science basis[M]. Cambridge: Cambridge University Press, 2021. |
[3] | 王宁练, 刘时银, 吴青柏, 等. 北半球冰冻圈变化及其对气候环境的影响[J]. 中国基础科学, 2015, 17(2): 9-14. |
[3] | [Wang Ninglian, Liu Shiyin, Wu Qingbai, et al. Recent progress in the study of the change of cryosphere in the Northern Hemisphere and its impacts on climate and environment[J]. China Basic Science, 2015, 17(2): 9-14.] |
[4] | Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2: 663-667. |
[5] | 李开明, 李忠勤, 高闻宇, 等. 近期新疆东天山冰川退缩及其对水资源影响[J]. 科学通报, 2011, 56(32): 2708-2716. |
[5] | [Li Kaiming, Li Zhongqin, Gao Wenyu, et al. Recent glacial retreat and its effect on water resources in eastern Xinjiang[J]. Chinese Science Bulletin, 2011, 56(32): 2708-2716.] |
[6] | Pritchard H D. Asia’s shrinking glaciers protect large populations from drought stress[J]. Nature, 2019, 569: 649-654. |
[7] | Chen Y N, Li W H, Deng H J, et al. Changes in Central Asia’s water tower: Past, present and future[J]. Scientific Reports, 2016, 6: 35458, doi: 10.1038/srep35458. |
[8] | 陈亚宁, 李稚, 方功焕. 中亚天山地区关键水文要素变化与水循环研究进展[J]. 干旱区地理, 2022, 45(1): 1-8. |
[8] | [Chen Yaning, Li Zhi, Fang Gonghuan. Changes of key hydrological elements and research progress of water cycle in the Tianshan Mountains, Central Asia[J]. Arid Land Geography, 2022, 45(1): 1-8.] |
[9] | 邢武成. 基于Landsat和ICESat数据的中国天山冰川资源时空变化研究[D]. 兰州: 西北师范大学, 2018. |
[9] | [Xing Wucheng. Spatial-temporal variation of glacier resources in Chinese Tianshan Mountains based Landsat and ICESat data[D]. Lanzhou: Northwest Normal University, 2018.] |
[10] | Farinotti D, Longuevergne L, Moholdt G, et al. Substantial glacier mass loss in the Tien Shan over the past 50 years[J]. Nature Geoscience, 2015, 8: 716-722. |
[11] | Xu J L, Liu S Y, Guo W Q, et al. Glacial area changes in the Ili River catchment (northeastern Tian Shan) in Xinjiang, China, from the 1960s to 2009[J]. Advances in Meteorology, 2015, 2015: 847257, doi: 10.1155/2015/847257. |
[12] | Kutuzov S, Shahgedanova M. Glacier retreat and climatic variability in the eastern Terskey-Alatoo, inner Tien Shan between the middle of the 19th century and beginning of the 21st century[J]. Global and Planetary Change, 2009, 69: 59-70. |
[13] | 刘潮海. 中亚天山冰川资源及其分布特征[J]. 冰川冻土, 1995, 17(3): 193-203. |
[13] | [Liu Chaohai. Glacier resources and distribution characteristics in the Central Asia Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 1995, 17(3): 193-203.] |
[14] | 胡汝骥. 中国天山自然地理[M]. 北京: 中国环境科学出版社, 2004. |
[14] | [Hu Ruji. Physical geography of the Tianshan Mountains in China[M]. Beijing: China Environmental Science Press, 2004.] |
[15] | 施雅风. 简明中国冰川目录[M]. 上海: 上海科学普及出版社, 2005. |
[15] | [Shi Yafeng. Concise Chinese glacier inventory[M]. Shanghai: Shanghai Scientific Popularization Press, 2005.] |
[16] | Pfeffer W T, Arendt A A, Bliss A, et al. The Randolph glacier inventory: A globally complete inventory of glaciers[J]. Journal of Glaciology, 2014, 60(221): 537-552. |
[17] | 刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16. |
[17] | [Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015, 70(1): 3-16.] |
[18] | 杨惠安, 李忠勤, 叶佰生, 等. 过去44年乌鲁木齐河源一号冰川物质平衡结果及其过程研究[J]. 干旱区地理, 2005, 28(1): 76-80. |
[18] | [Yang Hui’an, Li Zhongqin, Ye Baisheng, et al. Study on mass balance and process of glacier No.1 at the headwaters of the Urumqi River in the past 44 years[J]. Arid Land Geography, 2005, 28(1): 76-80.] |
[19] | 贺晶. 1960s—2015年祁连山现代冰川变化研究[D]. 西安: 西北大学, 2020. |
[19] | [He Jing. Glacier variations in the Qilian Mountains, northwest China, between 1960s and 2015[D]. Xi’an: Northwest University, 2020.] |
[20] | Nuth C, K??b A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change[J]. The Cryosphere, 2011, 5: 271-290. |
[21] | Shean D E, Alexandrov O, Moratto Z M, et al. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116: 101-117. |
[22] | Huss M. Density assumptions for converting geodetic glacier volume change to mass change[J]. The Cryosphere, 2013, 7(1): 877-887. |
[23] | 李宏亮, 王璞玉, 李忠勤, 等. 基于多源数据的天山乌鲁木齐河源1号冰川变化研究[J]. 冰川冻土, 2021, 43(4): 1018-1026. |
[23] | [Li Hongliang, Wang Puyu, Li Zhongqin, et al. Research on the changes of the Urumqi Glacier No.1, Tianshan Mountains based on multi-source remote sensing data[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 1018-1026.] |
[24] | Kapitsa V, Shahgedanova M, Severskiy I, et al. Assessment of changes in mass balance of the Tuyuksu group of glaciers, northern Tien Shan, between 1958 and 2016 using ground-based observations and Pléiades Satellite imagery[J]. Frontiers in Earth Science, 2020, 8: 259, doi: 10.3389/feart.2020.00259. |
[25] | Azisov E, Hoelzle M, Vorogushyn S, et al. Reconstructed centennial mass balance change for Golubin glacier, northern Tien Shan[J]. Atmosphere, 2022, 13: 954, doi: 10.3390/atmos13060954. |
[26] | Van Tricht L, Paice C M, Rybak O, et al. Reconstruction of the historical (1750—2020) mass balance of Bordu, Kara-Batkak and Sary-Tor glaciers in the inner Tien Shan, Kyrgyzstan[J]. Frontiers in Earth Science, 2021, 9: 734802, doi: 10.3389/feart.2021.734802. |
[27] | Brun F, Berthier E, Wagnon P, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016[J]. Nature Geoscience, 2017, 10: 668-673. |
[28] | 陈安安. 基于多源DEM的近50年高亚洲地区冰川物质平衡研究[D]. 兰州: 中国科学院西北生态环境资源研究院, 2017. |
[28] | [Chen An’an. Glacier mass budgets in the High Mountain Asia based on multi-source DEMs over past 50 years[D]. Lanzhou: Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, 2017.] |
[29] | Fan Y B, Ke C Q, Zhou X B, et al. Glacier mass-balance estimates over High Mountain Asia from 2000 to 2021 based on ICESat-2 and NASADEM[J]. Journal of Glaciology, 2022, 69(275): 500-512. |
[30] | 王宁练, 姚檀栋, 徐柏青, 等. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响[J]. 中国科学院院刊, 2019, 34(11): 1220-1232. |
[30] | [Wang Ninglian, Yao Tandong, Xu Baiqing, et al. Spatiotemporal pattern, trend, and influence of glacier change in Tibetan Plateau and surroundings under global warming[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1220-1232.] |
/
〈 |
|
〉 |