生态与环境

近20 a内蒙古高原城乡开发建设对生态系统生产力的影响

  • 萨日盖 ,
  • 包玉海 ,
  • 窦银银 ,
  • 董禹麟 ,
  • 潘涛 ,
  • 匡文慧
展开
  • 1.内蒙古师范大学地理科学学院,内蒙古 呼和浩特 010022
    2.内蒙古师范大学内蒙古自治区遥感与地理信息系统重点实验室,内蒙古 呼和浩特 010022
    3.中国科学院地理科学与资源研究所陆地表层格局与模拟重点实验室,北京 100101
    4.曲阜师范大学,山东 日照 276826
萨日盖(1994-),女,博士研究生,主要从事城市生态环境研究. E-mail: sargai0824@163.com

收稿日期: 2022-09-06

  修回日期: 2022-10-31

  网络出版日期: 2023-07-24

基金资助

中国科学院战略性先导科技专项(XDA23100201)

Impacts of urban and rural construction on ecosystem productivity in Inner Mongolia Plateau from 2000 to 2020

  • Rigai SA ,
  • Yuhai BAO ,
  • Yinyin DOU ,
  • Yulin DONG ,
  • Tao PAN ,
  • Wenhui KUANG
Expand
  • 1. College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
    2. Inner Mongolia Key Laboratory of Remote Sensing & Geography Information System, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
    3. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, Beijing, China
    4. Qufu Normal University, Rizhao 276826, Shandong, China

Received date: 2022-09-06

  Revised date: 2022-10-31

  Online published: 2023-07-24

摘要

内蒙古高原人类城乡开发建设活动监测及其对区域生态系统生产力影响的科学评估对于建设国家北方生态屏障具有重要的科学实践意义。基于遥感影像、土地利用数据、气象观测资料和其他辅助信息,综合应用动态度分析和邻域替代等方法,评估了2000—2020年内蒙古高原城乡开发建设的空间范围、扩张速度以及对生态系统生产力影响。结果表明:(1) 2020年内蒙古高原城乡开发建设用地面积为18206.49 km2,占土地总面积的1.46%。(2) 2000—2020年城乡建设扩张面积为7462.99 km2,59.76%源于工矿用地的扩张。城乡建设用地扩张主要占用自然和农田生态系统,其中城市用地和农村居民点以占用农田为主,工矿用地以占用草地和荒漠为主。(3) 2000—2020年内蒙古高原由于人类城乡开发建设活动导致的植被净初级生产力(Net primary productivity,NPP)损失达到143.51×104 tC,采矿开发导致的损失最多,占比由2000—2010年的60.72%增加到2010—2020年的73.91%。2010年以来,城乡开发建设占用农田导致的NPP损失有所缓解,然而草地NPP损失在加剧。(4) 毛乌素沙地、呼伦贝尔沙地、浑善达克沙地和科尔沁沙地的生态系统NPP损失主要由采矿开发导致。城镇人口、GDP增加以及相关政策引起城乡建设不断扩张,对生态系统NPP产生一定程度的影响。研究结果对内蒙古高原高质量城乡开发建设和生态文明建设具有重要参考价值。

本文引用格式

萨日盖 , 包玉海 , 窦银银 , 董禹麟 , 潘涛 , 匡文慧 . 近20 a内蒙古高原城乡开发建设对生态系统生产力的影响[J]. 干旱区地理, 2023 , 46(6) : 922 -933 . DOI: 10.12118/j.issn.1000-6060.2022.442

Abstract

The monitoring of human urban and rural construction activities in the Inner Mongolia Plateau, China and the scientific assessment of their impact on regional ecosystem productivity have important scientific and practical significance for the construction of the national northern ecological barrier. Based on satellite images, land use data, meteorological observation data, and auxiliary information, this study assessed the impacts of the expansion and speed of urban and rural construction on the ecosystem productivity in the Inner Mongolia Plateau from 2000 to 2020 using dynamic attitude analysis and neighborhood substitution methods. The results show that: (1) The area of urban and rural construction land (URCL) in 2020 was 18206.49 km2, accounting for 1.46% of the total area of the Inner Mongolia Plateau. (2) In the past 20 years, the area of URCL expansion was 7462.99 km2, of which 59.76% came from the expansion of industrial land. URCL mainly occupied natural and cultivated ecosystems, in which urban land and rural residential land mostly occupied cultivated ecosystems, while industrial land mainly occupied grassland and desert ecosystems. (3) From 2000 to 2020, the total loss of net primary productivity (NPP) caused by human urban and rural construction activities reached 143.51×104 tC in the Inner Mongolia Plateau. Industrial land activity is the main cause of NPP loss of natural ecosystems and increased from 60.72% in 2000—2010 to 73.91% in 2010—2020. Compared to 2000—2010, the NPP loss was alleviated in the cropland ecosystem but intensified in the grassland ecosystem in 2010—2020. (4) The NPP loss of Mu Us Sandy Land, Hulunbuir Sandy Land, Otindag Sandy Land, and Horqin Sandy Land were mainly caused by industrial land expansion. However, due to the impact of urban greening, the NPP of the ecosystem around the city increased slightly. The urban population, gross domestic product (GDP), and related policies led to the continuous expansion of URCL, which has a certain impact on ecosystem NPP. This study has an important reference value for urban and rural construction and ecological civilization construction, and ecological protection in the Inner Mongolia Plateau.

参考文献

[1] Jiang H L, Xu X, Guan M X, et al. Determining the contributions of climate change and human activities to vegetation dynamics in agro-pastural transitional zone of northern China from 2000 to 2015[J]. Science of the Total Environment, 2020, 718: 134871, doi: 10.1016/j.scitotenv.2019.134871.
[2] Christopher B F, James T R, Carolyn M M. Global net primary production: Combining ecology and remote sensing[J]. Remote Sensing Environment, 1995, 51: 74-85.
[3] Capistrano D, Samper C, Lee M J, et al. Ecosystems and human well-being: Multiscale assessments: Findings of the sub-global assessments working group of the millenium ecosystem assessment[M]. Washington, D.C: Island Press, 2005.
[4] 傅伯杰, 于丹丹, 吕楠. 中国生物多样性与生态系统服务评估指标体系[J]. 生态学报, 2017, 37(2): 341-348.
[4] [Fu Bojie, Yu Dandan, Lü Nan. An indicator system for biodiversity and ecosystem services evaluation in China[J]. Acta Ecologica Sinica, 2017, 37(2): 341-348.]
[5] 许洁, 陈惠玲, 商沙沙, 等. 2000-2014年青藏高原植被净初级生产力时空变化及对气候变化的响应[J]. 干旱区地理, 2020, 43(3): 592-601.
[5] [Xu Jie, Chen Huiling, Shang Shasha, et al. Response of net primary productivity of Tibetan Plateau vegetation to climate change based on CEVSA model[J]. Arid Land Geography, 2020, 43(3): 592-601.]
[6] Seto K C, Guneralp B, Hutyra L. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(40): 16083-16088.
[7] Huang Q, Liu Z, He C, et al. The occupation of cropland by global urban expansion from 1992 to 2016 and its implications[J]. Environmental Research Letters, 2020, 15(8): 084037, doi: 10.1088/1748-9326/ab858c.
[8] Fu Y C, Lu X Y, Zhao Y L, et al. Assessment impacts of weather and land use/land cover (LULC) change on urban vegetation net primary productivity (NPP): A case study in Guangzhou, China[J]. Remote Sensing, 2013, 5(8): 4125-4144.
[9] Yin X, Hens L. The influence of urbanization on vegetation carbon pools under a tele-coupling framework in China[J]. Environment Development and Sustainability, 2022, 24(3): 4046-4063.
[10] 茆杨, 蒋勇军, 张彩云, 等. 近20年来西南地区植被净初级生产力时空变化与影响因素及其对生态工程响应[J]. 生态学报, 2022, 42(7): 2878-2890.
[10] [Mao Yang, Jiang Yongjun, Zhang Caiyun, et al. Spatio-temporal changes and influencing factors of vegetation net primary productivity in southwest China in the past 20 years and its response to ecological engineering[J]. Acta Ecologica Sinica, 2022, 42(7): 2878-2890.]
[11] 侯湖平, 张绍良, 丁忠义, 等. 基于植被净初级生产力的煤矿区生态损失测度研究[J]. 煤炭学报, 2012, 37(3): 445-451.
[11] [Hou Huping, Zhang Shaoliang, Ding Zhongyi, et al. Study on the measurement of ecological loss based on the net primary productivity in coal mines[J]. Journal of China Coal Society, 2012, 37(3): 445-451.]
[12] Buyantuyev A, Wu J. Urbanization alters spatiotemporal patterns of ecosystem primary production: A case study of the Phoenix Metropolitan region, USA[J]. Journal of Arid Environments, 2008, 73(4): 512-520.
[13] Xu C, Liu M, An S, et al. Assessing the impact of urbanization on regional net primary productivity in Jiangyin County, China[J]. Journal of Environmental Management, 2007, 85(3): 597-606.
[14] 迟文峰, 白文科, 刘正佳, 等. 基于RWEQ模型的内蒙古高原土壤风蚀研究[J]. 生态环境学报, 2018, 27(6): 1024-1033.
[14] [Chi Wenfeng, Bai Wenke, Liu Zhengjia, et al. Wind erosion in Inner Mongolia Plateau using the revised wind erosion equation[J]. Ecology and Environmental Sciences, 2018, 27(6): 1024-1033.]
[15] 吴晓光, 姚云峰, 迟文峰, 等. 1990-2015年内蒙古高原土壤风蚀时空差异特征[J]. 中国农业大学学报, 2020, 25(3): 117-127.
[15] [Wu Xiaoguang, Yao Yunfeng, Chi Wenfeng, et al. Spatio-temporal characteristics of soil wind erosion in Inner Mongolia Plateau from 1990 to 2015[J]. Journal of China Agricultural University, 2020, 25(3): 117-127.]
[16] Zhou D J, Zhao X, Hu H F, et al. Long-term vegetation changes in the four mega-sandy lands in Inner Mongolia, China[J]. Landscape Ecology, 2015, 30(9): 1613-1626.
[17] Zeng X, Liu Z, He C, et al. Quantifying surface coal-mining patterns to promote regional sustainability in Ordos, Inner Mongolia[J]. Sustainability, 2018, 10(4): 1135, doi: 10.3390/su10041135.
[18] 白雪莲, 季树新, 王理想, 等. 鄂尔多斯十大孔兑区植被生产力变化趋势对土地利用转移的响应[J]. 自然资源学报, 2019, 34(6): 1186-1195.
[18] [Bai Xuelian, Ji Shuxin, Wang Lixiang, et al. Response of change trend of vegetation productivity to land use conversion in Ten Tributaries Basin of Ordos[J]. Journal of Natural Resources, 2019, 34(6): 1186-1195.]
[19] 白淑英, 吴奇, 沈渭寿, 等. 内蒙古草原矿区土地退化特征[J]. 生态与农村环境学报, 2016, 32(2): 178-186.
[19] [Bai Shuying, Wu Qi, Shen Weishou, et al. Characteristics of land degradation in mining areas of Inner Mongolia grassland[J]. Journal of Ecology and Rural Environment, 2016, 32(2): 178-186.]
[20] 丁美慧, 孙泽祥, 刘志锋, 等. 中国北方农牧交错带城市扩展过程对植被净初级生产力影响研究--以呼包鄂地区为例[J]. 干旱区地理, 2017, 40(3): 614-621.
[20] [Ding Meihui, Sun Zexiang, Liu Zhifeng, et al. Impacts of urban expansion on net primary productivity in the agro-pastoral ecotone in northern China: A case of Hohhot-Baotou-Ordos region[J]. Arid Land Geography, 2017, 40(3): 614-621.]
[21] Sha Z Y, Zhong J L, Bai Y F, et al. Spatio-temporal patterns of satellite-derived grassland vegetation phenology from 1998 to 2012 in Inner Mongolia, China[J]. Journal of Arid Land, 2016, 8(3): 462-477.
[22] Liu J Y, Kuang W H, Zhang Z W, et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s[J]. Journal of Geographical Sciences, 2014, 24(2): 195-210.
[23] 匡文慧, 张树文, 杜国明, 等. 2015-2020年中国土地利用变化遥感制图及时空特征分析[J]. 地理学报, 2022, 77(5): 1056-1071.
[23] [Kuang Wenhui, Zhang Shuwen, Du Guoming, et al. Remotely sensed mapping and analysis of spatio-temporal patterns of land use change across China in 2015-2020[J]. Acta Geographica Sinica, 2022, 77(5): 1056-1071.]
[24] 闫慧敏, 刘纪远, 黄河清, 等. 城市化和退耕还林草对中国耕地生产力的影响[J]. 地理学报, 2012, 67(5): 579-588.
[24] [Yan Huimin, Liu Jiyuan, Huang Heqing, et al. Impacts of cropland transformation on agricultural production under urbanization and grain for green project in China[J]. Acta Geographica Sinica, 2012, 67(5): 579-588.]
[25] Peng S Z, Ding Y X, Liu W Z, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 2019, 11: 1931-1946.
[26] Ma Q, He C Y, Fang X N. A rapid method for quantifying landscape-scale vegetation disturbances by surface coal mining in arid and semiarid regions[J]. Landscape Ecology, 2018, 33(8): 2061-2070.
[27] Ma Q, Wu J, He C, et al. The speed, scale, and environmental and economic impacts of surface coal mining in the Mongolian Plateau[J]. Resources Conservation and Recycling, 2021, 173(3): 105730, doi: 10.1016/j.resconrec.2021.105730.
[28] Zhang C, Kuang W H, Wu J G, et al. Industrial land expansion in rural China threatens environmental securities[J]. Frontiers of Environmental Science & Engineering, 2021, 15(2): 2095-2201.
[29] 高晓亮, 王志良, 刘冀伟, 等. 基于灰度特征统计的可变区域图像分割算法[J]. 光学学报, 2011, 31(1): 198-203.
[29] [Gao Xiaoliang, Wang Zhiliang, Liu Jiwei, et al. Variable domain algorithm for image segmentation using statistical models based on intensity features[J]. Acta Optica Sinica, 2011, 31(1): 198-203.]
[30] 乌兰图雅. 蒙古高原草地利用特征及其国别差异[J]. 地理学报, 2021, 76(7): 1722-1731.
[30] [Wulan Tuya. Characteristics of grassland utilization in Mongolian Plateau and their differences among countries[J]. Acta Geographica Sinica, 2021, 76(7): 1722-1731.]
[31] 阿荣, 毕其格, 董振华. 基于MODIS/NDVI的锡林郭勒草原植被变化及其归因[J]. 资源科学, 2019, 41(7): 1374-1386.
[31] [A Rong, Bi Qige, Dong Zhenhua. Change of grassland vegetation and driving factors based on MODIS/NDVI in Xilingol, China[J]. Resources Science, 2019, 41(7): 1374-1386.]
[32] Heidenreich B. What are global temperature grasslands worth? A case for their protection[M]. Canada: West Georgia Street, Van couver, BC, 2009.
[33] Kuang W H, Liu J Y, Tian H Q, et al. Cropland redistribution to marginal lands undermines environmental sustainability[J]. National Science Review, 2022, 9(1): 66-78.
[34] He C Y, Liu Z F, Min X, et al. Urban expansion brought stress to food security in China: Evidence from decreased cropland net primary productivity[J]. Science of the Total Environment, 2017, 576(15): 660-670.
[35] Gang C C, Zhao W, Zhao T, et al. The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, northern China[J]. Science of the Total Environment, 2018, 645: 827-836.
[36] 于娜, 赵媛媛, 丁国栋, 等. 基于生态足迹的中国四大沙地地区可持续评价[J]. 干旱区地理, 2018, 41(6): 1310-1320.
[36] [Yu Na, Zhao Yuanyuan, Ding Guodong, et al. Sustainability assessment in four sandy lands of China based on the ecological footprint model[J]. Arid Land Geography, 2018, 41(6): 1310-1320.]
[37] 常亚斌, 朱睿, 肖生春, 等. 1980-2015年阿拉善盟沙地面积变化及其驱动因子[J]. 中国沙漠, 2020, 40(6): 82-90.
[37] [Chang Yabin, Zhu Rui, Xiao Shengchun, et al. Sandy land change from 1980 to 2015 in Alxa League, China and its driving factors[J]. Journal of Desert Research, 2020, 40(6): 82-90.]
[38] 马永桃, 任孝宗, 胡慧芳, 等. 基于地理探测器的浑善达克沙地植被变化定量归因[J]. 中国沙漠, 2021, 41(4): 195-204.
[38] [Ma Yongtao, Ren Xiaozong, Hu Huifang, et al. Vegetation dynamics and its driving force in Otindag Sandy Land based on Geodetector[J]. Journal of Desert Research, 2021, 41(4): 195-204.]
[39] 欧阳玲, 马会瑶, 王宗明, 等. 基于遥感与地理信息数据的科尔沁沙地生态环境状况动态评价[J]. 生态学报, 2022, 42(14): 1-16.
[39] [Ouyang Ling, Ma Huiyao, Wang Zongming, et al. Dynamic evaluation of ecological environment in Horqin Sandy Land based on remote sensing and geographic information data[J]. Acta Ecologica Sinica, 2022, 42(14): 1-16.]
文章导航

/