气候变化与地表过程

伊犁谷地地质灾害分布特征及主控因素分析

  • 梁世川 ,
  • 乔华 ,
  • 吕东 ,
  • 贺强
展开
  • 新疆维吾尔自治区地质环境监测院,新疆 乌鲁木齐 830000
梁世川(1986-),男,硕士研究生,高级工程师,主要从事水文地质、工程地质、环境地质、地质灾害等方面的研究. E-mail: 522346375@qq.com

收稿日期: 2022-09-14

  修回日期: 2022-10-31

  网络出版日期: 2023-07-24

基金资助

第二次青藏高原综合科学考察研究(2019QZKK0904);新疆重大地质灾害监测预警与防治技术示范(2021B03004)

Distribution characteristics and main controlling factors of geohazards in Ili Valley

  • Shichuan LIANG ,
  • Hua QIAO ,
  • Dong LYU ,
  • Qiang HE
Expand
  • Xinjiang Uygur Autonomous Region Institute of Geological Environment Monitoring, Urumqi 830000, Xinjiang, China

Received date: 2022-09-14

  Revised date: 2022-10-31

  Online published: 2023-07-24

摘要

伊犁谷地滑坡、崩塌、泥石流、地面塌陷等地质灾害频发,灾害形成的影响因素多样。基于伊犁谷地地质灾害数据库,利用频率比法、接受者操作特征曲线(Receiver operating characteristic curve,ROC)等统计分析方法,研究伊犁谷地地质灾害的分布特征,分析地质灾害发育的主控因素。结果表明:(1) 伊犁谷地地质灾害整体发育程度东部大于西部,集中在500~3500 m高程的中低山区。在时间上,主要集中在春夏融雪和降雨季节。(2) 地质灾害的发育受地层岩性、地质构造、地形地貌、降水等多因素影响,但不同类型地质灾害的主控因素不同,滑坡受地层岩性、高程、坡度、年降水量的影响最明显,崩塌主要为坡度、高程、距断层距离因素控制;地面塌陷明显受高程、距断层距离、降水量的影响,基本由地下采矿活动诱发;距断层距离和高程是泥石流发育的主控因素。

本文引用格式

梁世川 , 乔华 , 吕东 , 贺强 . 伊犁谷地地质灾害分布特征及主控因素分析[J]. 干旱区地理, 2023 , 46(6) : 880 -888 . DOI: 10.12118/j.issn.1000-6060.2022.458

Abstract

Geohazards such as landslides, rock fall, debris flow, and ground collapse occur frequently in the Ili Valley, Xinjiang, China, and there are various influencing factors for the formation of these geohazards. Based on the database of geohazards in the Ili Valley, this paper uses statistical analysis methods such as the frequency ratio and receiver operating characteristic curve to study the distribution characteristics and main controlling factors of geohazards in the Ili Valley. The results show the following: (1) The overall development degree of geohazards in the Ili Valley is greater in the east than in the west, and they are distributed in the middle and low mountains with 500-3500-m elevation. In terms of time of occurrence, they are mainly clustered in the spring and summer snowmelt and rainfall seasons. (2) The development of geohazards is affected by stratigraphic lithology, geological structure, topography and geomorphology, precipitation, and other factors. However, the main controlling factors for different types of geohazards are different. Landslides are most obviously affected by stratigraphic lithology, elevation, slope, and annual precipitation, while rock falls are mainly controlled by slope, elevation, and distance from faults. Ground collapses are obviously affected by elevation, distance from fault, and precipitation, and are basically induced by underground mining activities. The distance and elevation from faults are the main controlling factors for the development of debris flows.

参考文献

[1] 胡卫忠. 新疆的干旱环境与滑坡、泥石流及其防治对策[J]. 地质灾害与环境保护, 1994(3): 1-7.
[1] [Hu Weizhong. Arid environment, landslides and debris flow in Xinjiang and its preservation and controlling[J]. Geological Hazards and Environment Preservation, 1994(3): 1-7.]
[2] 陈亚宁, 李卫红. 新疆干旱区地质灾害区划与减灾对策[J]. 中国地质灾害与防治学报, 1995(4): 75-80.
[2] [Chen Yaning, Li Weihong. Zoning of geological hazards and countermeasures for its reduction in Xinjiang arid region[J]. The Chinese Journal of Geological Hazard and Control, 1995(4): 75-80.]
[3] 殷剑虹, 徐予洋. 伊犁河谷气候变化特征分析[J]. 沙漠与绿洲气象, 2007, 1(6): 20-23.
[3] [Yin Jianhong, Xu Yuyang. Analysis of climate change characteristics in Yili Valley[J]. Desert and Oasis Meteorology, 2007, 1(6): 20-23.]
[4] 尹光华, 王兰民, 袁中夏, 等. 新疆伊犁黄土的物性指标、动力学特性与滑坡[J]. 干旱区地理, 2009, 32(6): 899-905.
[4] [Yin Guanghua, Wang Lanmin, Yuan Zhongxia, et al. Physical index, dynamic property and landslide of Ili loess[J]. Arid Land Geography, 2009, 32(6): 899-905.]
[5] 安海堂, 刘平. 新疆伊犁地区黄土滑坡成因及影响因素分析[J]. 地质灾害与环境保护, 2010, 21(3): 22-25.
[5] [An Haitang, Liu Ping. Genesis and influencing factors of loess landslides in Yili region in Xinjiang[J]. Geological Hazards and Environment Preservation, 2010, 21(3): 22-25.]
[6] 赵良军, 李虎, 刘玉锋, 等. 新疆伊犁果子沟地质灾害风险评价及其致灾因子[J]. 干旱区研究, 2017, 34(3): 693-700.
[6] [Zhao Liangjun, Li Hu, Liu Yufeng, et al. Evaluation on geological hazard risk and disaster-causing factors in the Guozigou Valley in Ili, Xinjiang[J]. Arid Zone Research, 2017, 34(3): 693-700.]
[7] 毛伟, 如黑艳·木合买尔, 贺强. 新疆伊犁谷地滑坡地质灾害形成机制及防治措施[J]. 西部资源, 2018(3): 131-133.
[7] [Mao Wei, Muhemaier Ruheiyan, He Qiang. Formation mechanism and prevention measures of landslide geological hazards in Yili Valley, Xinjiang[J]. Journal of Western Resources, 2018(3): 131-133.]
[8] 曹小红, 孟和, 尚彦军, 等. 伊犁谷地黄土滑坡发育分布规律及成因[J]. 新疆地质, 2020, 38(3): 405-411.
[8] [Cao Xiaohong, Meng He, Shang Yanjun, et al. The development and distribution of loess landslides in Yili Valley and its causes[J]. Xinjiang Geology, 2020, 38(3): 405-411.]
[9] 张林梵, 王佳运, 张茂省, 等. 基于BP神经网络的区域滑坡易发性评价[J]. 西北地质, 2022, 55(2): 260-270.
[9] [Zhang Linfan, Wang Jiayun, Zhang Maoxing, et al. Evaluation of regional landslide susceptibility assessment based on BP neural network[J]. Northwestern Geology, 2022, 55(2): 260-270.]
[10] 乔国文. 新疆伊犁地区黄土性质及边坡稳定性分析与防治--以省道316线加朗普特滑坡为例[J]. 西南公路, 2016(3): 163-167.
[10] [Qiao Guowen. Analysis of loess properties and slope stability in Yili area, Xinjiang: A case study of Jialangpute landslide on provincial highway 316[J]. Southwest Road, 2016(3): 163-167.]
[11] 刘丽楠, 李守定, 姜越, 等. 新疆伊犁加朗普特黄土滑坡泥石流降雨诱发机理[J]. 工程地质学报, 2017, 25(5): 1230-1237.
[11] [Liu Linan, Li Shouding, Jiang Yue, et al. Failure mechanism of loess landslides due to saturated-unsaturated seepage: Case study of G-allente landslide in Yili, Xinjiang[J]. Journal of Engineering Geology, 2017, 25(5): 1230-1237.]
[12] 曹小红, 尚彦军, 弓小平, 等. 新源县加朗普特滑坡发育特征、形成机理及治理[J]. 新疆地质, 2019, 37(4): 560-565.
[12] [Cao Xiaohong, Shang Yanjun, Gong Xiaoping, et al. Development characteristics, formation mechanism and protection of Jialangpute landslide in Xinyuan County[J]. Xinjiang Geology, 2019, 37(4): 560-565.]
[13] 刘毅. 伊犁黄土滑坡特征、成因及稳定性分析[D]. 石河子: 石河子大学, 2015.
[13] [Liu Yi. Analysis of geological features, cause and stability of the loess landslide in Ili[D]. Shihezi: Shihezi University, 2015.]
[14] 张鸿义, 黄洪标, 闫中学. 新疆新源山区黄土滑坡形成条件与防治措施[J]. 新疆地质, 2004, 22(3): 233-237.
[14] [Zhang Hongyi, Huang Hongbiao, Yan Zhongxue. Forming conditions and provention treatment of loess landlide in the Xinyuan mountain area, Xinjiang[J]. Xinjiang Geology, 2004, 22(3): 233-237.]
[15] 李艳永, 王成虎, 朱皓清, 等. 北天山地区震源机制与构造应力场特征[J]. 地震, 2020, 40(2): 117-129.
[15] [Li Yanyong, Wang Chenghu, Zhu Haoqing, et al. The focal mechanism and stress field inversion in northern Tianshan Mountain[J]. Earthquake, 2020, 40(2): 117-129.]
[16] 叶玮. 新疆伊犁地区自然环境特点与黄土形成条件[J]. 干旱区地理, 1999, 22(3): 9-16.
[16] [Ye Wei. Characteristics of physical environment and conditions of loess formation in Yili area, Xinjiang[J]. Arid Land Geography, 1999, 22(3): 9-16.]
[17] 何辉, 玉素甫江·如素力. 2001-2015年伊犁地区植被NDVI变化及其影响因子的相对作用分析[J]. 中南林业科技大学学报, 2019, 39(10): 76-87.
[17] [He Hui, Rusuli Yusufujiang. Analysis of the relative role of vegetation cover changes and its influencing factors in Yili area from 2001 to 2015[J]. Journal of Central South University of Forestry & Technology, 2019, 39(10): 76-87.]
[18] 王瑞琪, 王学良, 刘海洋, 等. 基于精细DEM的崩塌滑坡灾害识别及主控因素分析--以雅鲁藏布江缝合带加查-朗县段为例[J]. 工程地质学报, 2019, 27(5): 1146-1152.
[18] [Wang Ruiqi, Wang Xueliang, Liu Haiyang, et al. Identification and main controlling factor analysis of collapse and landslide based on fine DEM: Taking Jiacha-Langxian section of Yarlung Zangbo suture zone as an example[J]. Journal of Engineering Geology, 2019, 27(5): 1146-1152.]
[19] 李郎平, 兰恒星, 郭长宝, 等. 基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价[J]. 现代地质, 2017, 31(5): 911-929.
[19] [Li Langping, Lan Hengxing, Guo Changbao, et al. Geohazard susceptibility assessment along the Sichuan-Tibet railway and its adjacent area using an improved frequency ratio method[J]. Geoscience, 2017, 31(5): 911-929.]
[20] 赵良军, 陈冬花, 李虎, 等. 基于二元逻辑回归模型的新疆果子沟滑坡风险区划[J]. 山地学报, 2017, 35(2): 203-211.
[20] [Zhao Liangjun, Chen Donghua, Li Hu, et al. A method to assess landslide susceptibility by using logistic regression model for Guozigou region, Xinjiang[J]. Mountain Research, 2017, 35(2): 203-211.]
[21] 彭建兵, 林鸿州, 王启耀, 等. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报, 2014, 22(4): 684-691.
[21] [Peng Jianbing, Lin Hongzhou, Wang Qiyao, et al. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology, 2014, 22(4): 684-691.]
[22] 叶玮, 桑长青, 赵兴有. 新疆黄土分布规律及粉尘来源[J]. 中国沙漠, 2003, 23(5): 38-44.
[22] [Ye Wei, Sang Changqing, Zhao Xingyou. Spatial-temporal distribution of loess and source of dust in Xinjiang[J]. Journal of Desert Research, 2003, 23(5): 38-44.]
[23] 宋友桂, 史正涛. 伊犁盆地黄土分布与组成特征[J]. 地理科学, 2010, 30(2): 267-272.
[23] [Song Yougui, Shi Zhengtao. Distribution and compositions of loess sediments in Yili Basin, Central Asia[J]. Scientia Geographica Sinica, 2010, 30(2): 267-272.]
[24] An P, Zhang A, Xing Y, et al. Experimental study on settling characteristics of thick self-weight collapsible loess in Xinjiang Ili region in China using field immersion test[J]. Soils and Foundations, 2018, 58(6): 1476-1491.
[25] 张家明. 含软弱夹层岩质边坡稳定性研究现状及发展趋势[J]. 工程地质学报, 2020, 28(3): 626-638.
[25] [Zhang Jiaming. State of art and trends of rock slope stability with soft interlayer[J]. Journal of Engineering Geology, 2020, 28(3): 626-638.]
[26] 古力米热·哈那提, 张音, 苏里坦, 等. 季节性冻土水热对融雪及气温的响应[J]. 干旱区地理, 2021, 44(4): 889-896.
[26] [Hanati Gulimire, Zhang Yin, Su Litan, et al. Response of water and heat of seasonal frozen soil to snow melting and air temperature[J]. Arid Land Geography, 2021, 44(4): 889-896.]
文章导航

/