黄河流域城市生态福利绩效测算及驱动因素研究
收稿日期: 2022-08-03
修回日期: 2022-09-11
网络出版日期: 2023-06-05
基金资助
国家社会科学基金项目(18BJY120);山西省社科联重点课题(SSKLZDKT2022147);山西省黄河文化生态研究院项目(HH202101);运城学院旅游管理重点学科(XK-2021031)
Measurement and influencing factors of ecological well-being performance of cities in Yellow River Basin
Received date: 2022-08-03
Revised date: 2022-09-11
Online published: 2023-06-05
生态福利绩效(EWP)的提升是生态文明建设的必然选择,对区域可持续发展具有重要意义。从生态福利视角出发,构建指标体系,基于面板数据,采用非期望产出超效率SBM模型对2006—2019年黄河流域59个地级城市EWP进行测算,运用空间探索方法和时空地理加权回归(GTWR)模型对流域EWP的空间分布特征及驱动因素进行解析。结果表明:(1) 黄河流域城市EWP值普遍较低,平均存在19.7%的提升空间。(2) 黄河流域城市EWP存在显著正向空间自相关,“热点”高-高型城市主要分布在人口密度较低的上游地区;“冷点”低-低型多为黄河中下游经济发展较快、人口相对集中的城市。(3) 降水量、教育发展水平和产业结构水平对城市EWP的提升具有显著促进作用;人口密度、经济强度及金融发展水平对城市EWP的改善具有明显抑制作用。其中,降水量、教育发展水平和人口密度对城市EWP的边际效应较大。研究结果弥补了EWP影响因子“时-空”非平稳性分析的不足,可为有关部门制定城市EWP政策提供参考依据。
董洁芳 , 张凯莉 , 屈学书 , 阮征 . 黄河流域城市生态福利绩效测算及驱动因素研究[J]. 干旱区地理, 2023 , 46(5) : 834 -845 . DOI: 10.12118/j.issn.1000-6060.2022.383
The improvement of ecological well-being performance (EWP) is an inevitable choice for the construction of urban ecological civilization and is of great significance to the sustainable development. This paper established the evaluation index system of EWP from the perspective of ecological well-being. Based on the panel data of 59 prefecture-level cities in the Yellow River Basin of China from 2006 to 2019, this article used the undesired output SBM model to measure the EWP of 59 prefecture-level cities. The spatial autocorrelation method and a geographically and temporally weighted regression model were then used to analyze spatial distribution characteristics and influencing factors of interurban EWP in the Yellow River Basin. the results showed the following: (1) The overall EWP level of prefecture-level cities in the Yellow River Basin is relatively low, with 19.7% room for improvement. (2) A significant positive spatial autocorrelation is observed in EWP in the Yellow River Basin. The “hot spot” high-high cities are mainly distributed in the upstream areas with low population density, and the “cold spots” low-low cities are mostly cities in the middle and lower reaches of the Yellow River Basin with rapid economic development and relatively concentrated population. (3) Precipitation, educational development level, and industrial structure level are the positive key factors affecting EWP, while population density, economic intensity, and financial development level contribute to negative effects. Among all the influencing factors, precipitation, educational development level, and population density have the largest marginal effect on urban EWP. The research results make up for the deficiency of the “time-space” non-stationarity analysis of EWP impact factors, and can provide reference for the relevant departments to formulate EWP policies in cities.
[1] | 李成宇, 张士强, 张伟, 等. 中国省际生态福利绩效测算及影响因素研究[J]. 地理科学, 2019, 39(12): 1875-1883. |
[1] | [Li Chengyu, Zhang Shiqiang, Zhang Wei, et al. Measurement and influencing factors of inter-provincial ecological well-being performance in China[J]. Acta Geographica Sinica, 2019, 39(12): 1875-1883. ] |
[2] | 李成宇, 张士强, 张伟. 中国省际工业生态效率空间分布及影响因素研究[J]. 地理科学, 2018, 38(12): 1970-1978. |
[2] | [Li Chengyu, Zhang Shiqiang, Zhang Wei. Spatial distribution characteristics and influencing factors of China’s inter provincial industrial eco-efficiency[J]. Scientia Geographica Sinica, 2018, 38(12): 1970-1978. ] |
[3] | Daly H E. The economics of the steady state[J]. The American Economic Review, American Economic Association, 1974, 64(2): 15-21. |
[4] | UNDP. Human development report 1990: Concept and measurement of human development[M]. Oxford: Oxford University Press, 1990: 15-18. |
[5] | Common M. Measuring national economic performance without using prices[J]. Ecological Economics, 2007, 64(1): 92-102. |
[6] | Hall J, Giovannini E, Morrone A, et al. A framework to measure the progress of societies[J]. Revue D Economie Politique, 2011, 121(1): 93-118. |
[7] | Tone K, Tsutsui M. Dynamic DEA: A slacks-based measure approach[J]. Omega, 2010, 38(3): 145-156. |
[8] | Vemuri A W, Costanza R. The role of human, social, built, and natural capital in explaining life satisfaction at the country level: Toward a national well-being index (NWI)[J]. Ecological Economics, 2006, 58(1): 119-133. |
[9] | 诸大建, 张帅. 生态福利绩效与深化可持续发展的研究[J]. 同济大学学报(社会科学版), 2014, 25(5): 106-115. |
[9] | [Zhu Dajian, Zhang Shuai. Ecological wellbeing performance and further research on sustainable development[J]. Journal of Tongji University (Social Science Edition), 2014, 25(5): 106-115. ] |
[10] | 徐昱东, 亓朋, 童临风. 中国省级地区生态福利绩效水平时空分异格局研究[J]. 区域经济评论, 2017(4): 123-131. |
[10] | [Xu Yudong, Qi Peng, Tong Linfeng. Spatial-temporal differentiation of Chinese provincial ecological well-being performance[J]. Regional Economic Review, 2017(4): 123-131. ] |
[11] | 臧漫丹, 诸大建, 刘国平. 生态福利绩效:概念、内涵及G20实证[J]. 中国人口·资源与环境, 2013, 23(5): 118-124. |
[11] | [Zang Mandan, Zhu Dajian, Liu Guoping. Ecological well-being performance: Concept, connotation and empirical of G20[J]. China Population, Resources and Environment, 2013, 23(5): 118-124. ] |
[12] | 冯吉芳, 袁健红. 中国区域生态福利绩效及其影响因素[J]. 中国科技论坛, 2016(3): 100-105. |
[12] | [Feng Jifang, Yuan Jianhong. On Chinese regional ecological well-being performance and its influence factors[J]. Forum on Science and Technology in China, 2016(3): 100-105. ] |
[13] | Dietz T, Rosa E A, York R. Environmentally efficient well-being: Is there a Kuznets curve?[J]. Applied Geography, 2012, 32(1): 21-28. |
[14] | 龙亮军. 基于两阶段Super-NSBM模型的城市生态福利绩效评价研究[J]. 中国人口·资源与环境, 2019, 29(7): 1-10. |
[14] | [Long Liangjun. Evaluation of urban ecological well-being performance of Chinese major cities based on two-stage super-efficiency network SBM model[J]. China Population, Resources and Environment, 2019, 29(7): 1-10. ] |
[15] | 龙亮军, 王霞, 郭兵. 基于改进DEA模型的城市生态福利绩效评价研究——以我国35个大中城市为例[J]. 自然资源学报, 2017, 32(4): 595-605. |
[15] | [Long Liangjun, Wang Xia, Guo Bing. Evaluation of urban ecological well-being performance based on revised DEA model: A case study of 35 major cities in China[J]. Journal of Natural Resources, 2017, 32(4): 595-605. ] |
[16] | Jorgenson A K, Dietz T. Economic growth does not reduce the ecological intensity of human well-being[J]. Sustainability Science, 2015, 10(1): 149-156. |
[17] | 方时姣, 肖权. 中国区域生态福利绩效水平及其空间效应研究[J]. 中国人口·资源与环境, 2019, 29(3): 1-10. |
[17] | [Fang Shijiao, Xiao Quan. Research on regional ecological well-being performance and spatial effect in China[J]. China Population, Resources and Environment, 2019, 29(3): 1-10. ] |
[18] | 龙亮军, 王霞. 上海市生态福利绩效评价研究[J]. 中国人口·资源与环境, 2017, 27(2): 84-92. |
[18] | [Long Liangjun, Wang Xia. A study on Shanghai’s ecological well-being performance[J]. China Population, Resources and Environment, 2017, 27(2): 84-92. ] |
[19] | Feng Y J, Zhong S Y, Li Q Y, et al. Ecological well-being performance growth in China (1994—2014): From perspectives of industrial structure green adjustment and green total factor productivity[J]. Journal of Cleaner Production, 2019, 236: 117556, doi: 10.1016/j.jclepro.2019.07.031. |
[20] | Bian J, Ren H, Liu P. Evaluation of urban ecological well-being performance in China: A case study of 30 provincial capital cities[J]. Journal of Cleaner Production, 2020, 254: 120109, doi: 10.1016/j.jclepro.2020.120109. |
[21] | 肖黎明, 吉荟茹. 绿色技术创新视域下中国生态福利绩效的时空演变及影响因素——基于省域尺度的数据检验[J]. 科技管理研究, 2018, 38(17): 243-251. |
[21] | [Xiao Liming, Ji Huiru. Spatial structure change and influencing factors of ecological well-being performance from the perspective of green technological innovation in China: Data analysis based on provincial panel data[J]. Science and Technology Management Research, 2018, 38(17): 243-251. ] |
[22] | 杜慧彬, 黄立军, 张辰, 等. 中国省级生态福利绩效区域差异性分解和收敛性研究[J]. 生态经济, 2019, 35(3): 187-193. |
[22] | [Du Huibin, Huang Lijun, Zhang Chen et al. Research on the regional differences decomposition and convergence mechanism of ecological well-being performance[J]. Ecological Economy, 2019, 35(3): 187-193. ] |
[23] | 陈少炜, 罗林杰, 查欣洁. 黄河流域生态福利绩效测算及影响因素分析[J]. 生态经济, 2021, 37(9): 146-154, 168. |
[23] | [Chen Shaowei, Luo Linjie, Zha Xinjie. Research on the measurement and influencing factors of ecological well-being performance: Evidence from the Yellow River region of China[J]. Ecological Economy, 2021, 37(9): 146-154, 168. ] |
[24] | 陈明华, 岳海珺, 郝云飞, 等. 黄河流域生态效率的空间差异、动态演进及驱动因素[J]. 数量经济技术经济研究, 2021, 38(9): 25-44. |
[24] | [Chen Minghua, Yue Haijun, Hao Yunfei, et al. The spatial disparity, dynamic evolution and driving factors of ecological efficiency in the Yellow River Basin[J]. The Journal of Quantitative & Technical Economics, 2021, 38(9): 25-44. ] |
[25] | 王奕淇, 李国平. 基于SD模型的黄河流域生态环境与社会经济发展可持续性模拟[J]. 干旱区地理, 2022, 45(3): 901-911. |
[25] | [Wang Yiqi, Li Guoping. Sustainable simulation of ecological environment and socio-economic development in the Yellow River Basin based on the SD model[J]. Arid Land Geography, 2022, 45(3): 901-911. ] |
[26] | 张凯莉, 冯荣荣, 刘潭, 等. 黄河流域城市化与生态系统服务价值协调性及障碍因素研究[J]. 干旱区地理, 2022, 45(4): 1254-1267. |
[26] | [Zhang Kaili, Feng Rongrong, Liu Tan, et al. Research on the coordination and obstacle factors of urbanization and ecosystem service value in the Yellow River Basin[J]. Arid Land Geography, 2022, 45(4):1254-1267. ] |
[27] | 任保平, 豆渊博. 黄河流域生态保护和高质量发展研究综述[J]. 人民黄河, 2021, 43(10): 30-34. |
[27] | [Ren Baoping, Dou Yuanbo. Literature review on ecological environment protection and high quality development of the Yellow River Basin[J]. Yellow River, 2021, 43(10): 30-34. ] |
[28] | Xu D. Quantization of the coupling mechanism between eco-environmental quality and urbanization from multisource remote sensing data[J]. Journal of Cleaner Production, 2021, 321: 128948, doi: 10.1016/j.jclepro.2021.128948. |
[29] | 马勇, 童昀, 任洁. 多源遥感数据支持下的县域尺度生态效率测算及稳健性检验——以长江中游城市群为例[J]. 自然资源学报, 2019, 34(6): 1196-1208. |
[29] | [Ma Yong, Tong Yun, Ren Jie. Calculation and robustness test of county-scale ecological efficiency based on multi-source remote sensing data: Taking the urban agglomeration in the middle reaches of Yangtze River as an example[J]. Journal of Natural Resources, 2019, 34(6): 1196-1208. ] |
[30] | Bian J, Zhang Y, Shuai C, et al. Have cities effectively improved ecological well-being performance? Empirical analysis of 278 Chinese cities[J]. Journal of Cleaner Production, 2020, 245: 118913, doi: 10.1016/j.jclepro.2019.118913. |
[31] | Tone K. A slacks-based measure of super-effciency in data envelopment analysis[J]. European Journal of Operational Research, 2002, 143(1): 32-41. |
[32] | 高志刚, 童思聪. 基于非期望产出的新疆区域生态经济投入效益分析[J]. 干旱区地理, 2020, 43(3): 777-785. |
[32] | [Gao Zhigang, Tong Sicong. Regional eco-economic input efficiency of Xinjiang based on undesirable output[J]. Arid Land Geography, 2020, 43(3): 777-785. ] |
[33] | 杨晴青, 刘倩, 尹莎, 等. 秦巴山区乡村交通环境脆弱性及影响因素——以陕西省洛南县为例[J]. 地理学报, 2019, 74(6): 1236-1251. |
[33] | [Yang Qingqing, Liu Qian, Yin Sha. Vulnerability and influencing factors of rural transportation environment in Qinling-Daba mountainous areas: A case study of Luonan County in Shaanxi Province[J]. Acta Geographica Sinica, 2019, 74(6): 1236-1251. ] |
[34] | Brunsdon C, Fotheringham S, Charlton M. Geographically weighted regression-modelling spatial non-stationarity[J]. Journal of the Royal Statistical Society, 1998, 47(3): 431-443. |
[35] | 刘卫东, 刘红光, 范晓梅, 等. 地区间贸易流量的产业—空间模型构建与应用[J]. 地理学报, 2012, 67(2): 147-156. |
[35] | [Liu Weidong, Liu Hongguang, Fan Xiaomei, et al. Sector-specific spatial statistic model for estimating inter-regional trade flows: A case study of agricultural, chemical and electronic sectors in China[J]. Acta Geographica Sinica, 2012, 67(2): 147-156. ] |
[36] | 胡宇娜, 梅林, 魏建国. 基于GWR模型的中国区域旅行社业效率空间分异及动力机制分析[J]. 地理科学, 2018, 38(1): 107-113. |
[36] | [Hu Yuna, Mei Lin, Wei Jianguo. Spatial differentiation and dynamic mechanism of regional travel agency efficiency in China based on GWR model[J]. Scientia Geographica Sinica, 2018, 38(1): 107-113. ] |
[37] | 李恩康, 陆玉麒, 陈娱. 中国外贸货物出口的地理格局演化及影响因素分析——基于货物出口距离和GTWR模型[J]. 地理研究, 2019, 38(11): 2624-2638. |
[37] | [Li Enkang, Lu Yuqi, Chen Yu. Geographic pattern evolution of China’s merchandise export and its influencing factors: Based on the analysis of merchandise export distance and the GTWR model[J]. Geographical Research, 2019, 38(11): 2624-2638. ] |
[38] | 耿甜伟, 陈海, 张行, 等. 基于GWR的陕西省生态系统服务价值时空演变特征及影响因素分析[J]. 自然资源学报, 2020, 35(7): 1714-1727. |
[38] | [Geng Tianwei, Chen Hai, Zhang Hang, et al. Spatiotemporal evolution of land ecosystem service value and its influencing factors in Shaanxi Province based on GWR[J]. Journal of Natural Resources, 2020, 35(7): 1714-1727. ] |
/
〈 |
|
〉 |