生物与土壤

膨润土对风沙土理化性质及苏丹草生长的影响

  • 马迪乃·阿布力米提 ,
  • 张勇娟 ,
  • 王莉 ,
  • 赵力 ,
  • 李从娟
展开
  • 1.中国科学院新疆生态与地理研究所国家荒漠-绿洲生态建设工程技术研究中心,新疆 乌鲁木齐 830011
    2.中国科学院大学,北京 100049
    3.乌鲁木齐市园林绿化工程质量监督站,新疆 乌鲁木齐 830017
    4.新疆维吾尔自治区草原总站,新疆 乌鲁木齐 830049
    5.国家林业和草原局西北调查规划设计院旱区生态水文与灾害防治国家林业和草原局重点实验室,陕西 西安 710049
马迪乃·阿布力米提(1998-),女,硕士研究生,主要从事荒漠化治理与生态恢复研究. E-mail: madinaiabulimiti20@mails.ucas.ac.cn

收稿日期: 2022-08-07

  修回日期: 2022-08-25

  网络出版日期: 2023-06-05

基金资助

新疆维吾尔自治区重点研发计划项目(2019B00005);新疆维吾尔自治区重点研发计划项目(2022B03030);中国科学院西部青年学者(2021-XBQNXZ-002);国家自然科学基金项目(31971731)

Effect of bentonite on physical and chemical properties of aeolian sandy soil and growth of Sorghum sudanense

  • ABULIMITI Madinai ,
  • Yongjuan ZHANG ,
  • Li WANG ,
  • Li ZHAO ,
  • Congjuan LI
Expand
  • 1. National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Urumqi City Landscaping Engineering Quality Supervision Station, Urumqi 830017, Xinjiang, China
    4. Xinjiang Uygur Autonomous Region Grassland Station, Urumqi 830049, Xinjiang, China
    5. Key Laboratory of Ecological Hydrology & Disaster Prevention in Arid Area, Northwest Institute of Investigation, Planning & Design of the State Forestry & Grassland Administration, Xi’an 710049, Shaanxi, China

Received date: 2022-08-07

  Revised date: 2022-08-25

  Online published: 2023-06-05

摘要

干旱和沙漠化已经成为一个世界性的资源和环境问题,严重限制了沙漠化地区的农林业生产及作物生长,因此开发出一种既保水又可以改善土壤理化性质的材料对该区的发展至关重要。膨润土作为一种天然矿物,独特的晶体结构使其具有良好的吸水、蓄水、保水和吸附能力。研究不同质量分数及组合的膨润土材料添加对风沙土保水能力、物理性质改善及植物生长的影响具有重要的现实性意义。结果表明:(1) 质量分数为0.5%膨润土(B1)、2.0%膨润土(B4)及2.0%膨润土+1.0%有机肥(BF4)的添加显著提高了风沙土含水率19.4%~21.9%。(2) 所有的膨润土处理均显著改善了风沙土的物理性质,其中膨润土添加量由1.5%增至2.0%时,盆栽土壤容重显著下降9.9%~11.1%(P<0.05),总孔隙度显著增加11.7%~13.1%(P<0.05),渗透系数显著降低56.7%~73.3%(P<0.05),田间持水量显著增加15.4%~16.1%(P<0.05)。(3) 膨润土(B>0.5%)的添加显著提高了风沙土的pH(P<0.05),其余处理均对pH没有显著影响(P>0.05),膨润土和腐殖酸(BA)、膨润土+有机肥+腐殖酸(BFA)的添加显著提高了风沙土的电导率(P<0.05)。(4) 对于植物生长的研究发现添加膨润土和有机肥提高了苏丹草(Sorghum sudanense)的发芽率和生物量。(5) 相关分析和冗余分析结果表明,膨润土和有机肥是通过改善土壤理化性质,在植物生长过程中发挥重要作用。(6) 扫描电镜(SEM)的结果发现膨润土遇水后迅速吸水膨胀,将沙粒与沙粒黏结在一起,充分发挥其吸附、黏结等作用。综上表明,在风沙土中添加膨润土和有机肥可以改善风沙土的物理性质,提高风沙土保水能力,有利于沙漠化地区风沙土的改良和植被恢复。

本文引用格式

马迪乃·阿布力米提 , 张勇娟 , 王莉 , 赵力 , 李从娟 . 膨润土对风沙土理化性质及苏丹草生长的影响[J]. 干旱区地理, 2023 , 46(5) : 763 -772 . DOI: 10.12118/j.issn.1000-6060.2022.389

Abstract

Drought and desertification have become a worldwide resource and environmental problem, causing the reduction in eolian sandy soil capability to hold water and fertilizer, lowering the soil quality, resulting in the scarcity of vegetation, and seriously limiting the agricultural and forestry production and crop growth in desertification areas. Therefore, for the healthy growth of soil desertification zones, it is crucial to develop a type of material that can not only preserve water but also improve the physical and chemical properties of soil in this area. Bentonite, a naturally occurring mineral, has excellent water absorption, water storage, and adsorption capabilities due to its distinctive crystal structure. This study selected the sand soil obtained from the Gurbantunggut Desert in Xinjiang of China as the research object and examined the effects of bentonite addition with different mass fractions and combinations (combined bentonite with organic fertilizer, humic acid) on water retention capacity, soil physical, and chemical properties (pH, conductivity, water retention, bulk density, permeability coefficient, and field capacity) improvement and plant growth of eolian sandy soil. Moreover, this study analyzed the effect and mechanism of bentonite on eolian sand soil improvement based on scanning electron microscopy (SEM) observation of eolian sand structure. The result showed the following: (1) The water content of aeolian sandy soil was significantly increased by 19.4%-21.9% (P<0.05) by the addition of 0.5% bentonite (B1), by the addition of 2.0% bentonite (B4) and by the combination of 2.0% bentonite and 1.0% organic fertilizer (BF4) (P<0.05). (2) Bentonite combinations of all treatments significantly improved the physical properties of aeolian sandy soil, and the addition of bentonite (B>0.5%) significantly decreased bulk density by 9.9%-11.1% (P<0.05), increased the total porosity by 11.7%-13.1% (P<0.05), decreased the osmotic coefficient by 56.7%-73.3% (P<0.05), and increased the field water capacity by 15.4%-16.1% (P<0.05). (3) In addition, the addition of bentonite (B>0.5%) significantly increased the pH of aeolian sandy soil (P<0.05), while the other treatments had no significant effect on pH (P>0.05). The combination of bentonite and humic acid (BA) and the combination of bentonite, humic acid, and organic fertilizer (BFA) significantly increased the conductivity of aeolian sandy soil (P<0.05). (4) The study on plant growth found that adding B and BF improved the germination rate and biomass of Sorghum sudanense. (5) The results of correlation analysis and redundancy analysis showed that bentonite and organic fertilizer played a significant role in biological growth by improving soil physical and chemical properties. (6) Moreover, the results of the SEM showed that bentonite played a role in water absorption expansion and bonding and binds sand grains together. In conclusion, adding bentonite and organic fertilizer to eolian sandy soil can improve the physical properties and improve the soil’s water retention capacity, which is conducive to the improvement of eolian sandy soil and plant recovery in desertification areas.

参考文献

[1] 关欣, 张凤荣, 巧云. 新疆土地资源的持续利用与开发[J]. 干旱地区农业研究, 2002, 20(1): 95-101.
[1] [Guan Xin, Zhang Fengrong, Qiao Yun. Sustainable utilization and explotation of land resources in Xinjiang[J]. Agricultural Research in the Arid Areas, 2002, 20(1): 95-101. ]
[2] 李路, 孙桂丽, 陆海燕, 等. 喀什地区生态脆弱性时空变化及驱动力分析[J]. 干旱区地理, 2021, 44(1): 277-288.
[2] [Li Lu, Sun Guili, Lu Haiyan, et al. Spatial-temporal variation and driving forces of ecological vulnerability in Kashi Prefecture[J]. Arid Land Geography, 2021, 44(1): 277-288. ]
[3] 王晓峰, 张明明, 尹礼唱, 等. 2000—2015年中国干旱半干旱地区沙漠化进程驱动力研究[J]. 生态环境学报, 2019, 28(5): 948-957.
[3] [Wang Xiaofeng, Zhang Mingming, Yin Lichang, et al. Study on the driving factors in desertification process in arid and semi-arid region of China from 2000 to 2015[J]. Ecology and Environmental Sciences, 2019, 28(5): 948-957. ]
[4] 胡彦婷, 张富, 罗珠珠, 等. 半干旱区降水和水土保持措施强度-径流演变规律研究[J]. 干旱区地理, 2020, 43(6): 1426-1434.
[4] [Hu Yanting, Zhang Fu, Luo Zhuzhu, et al. Precipitation and soil and water conservation measures intensity-runoff evolution law in semi-arid areas[J]. Arid Land Geography, 2020, 43(6): 1426-1434. ]
[5] Zhang F Y, Zhao C X, Lourenco D, et al. Factors affecting the soil-water retention curve of Chinese loess[J]. Bulletin of Engineering Geology and the Environment, 2020, 80(1): 717-729.
[6] Ismail S M, Ozawa K. Improvement of crop yield, soil moisture distribution and water use efficiency in sandy soils by clay application[J]. Applied Clay Science, 2007, 37(1-2): 81-89.
[7] 赖西聪, 黄家森, 肖凯升, 等. 粘土矿物对农田土壤保肥性能的研究[J]. 四川化工, 2018, 21(2): 6-8.
[7] [Lai Xicong, Huang Jiasen, Xiao Kaisheng, et al. Study on soil fertility control of clay minerals in farmland[J]. Sichuan Chemical Industry, 2018, 21(2): 6-8. ]
[8] Mohammadifard F, Tarakemeh A, Moghaddam M, et al. Bentonite mitigates the adverse effects of drought stress in fenugreek (Trigonella foenum-graecum L.)[J]. Journal of Soil Science and Plant Nutrition, 2022, 22(1): 1098-1111.
[9] Pi H W, Huggins D R, Sharratt B. Soil wind erosion influenced by clay amendment in the inland Pacific Northwest, USA[J]. Land Degradation and Development, 2020, 32(1): 241-255.
[10] Mi J Z, Gregorich E, Xu S T, et al. Effects of a one-time application of bentonite on soil enzymes in a semi-arid region[J]. Canadian Journal of Soil science, 2018, 98(3): 1-39.
[11] Han B, Weatherley A J, Mumford K, et al. Modification of naturally abundant resources for remediation of potentially toxic elements: A review[J]. Journal of Hazardous Materials, 2021, 421(5): 1-13.
[12] Mi J Z, Liu J H, Xu S T, et al. Effects of sandy soil amendment on soil moisture and growth status of millet with rainfed sandy soil in a semi-arid region[J]. Advanced Materials Research, 2015, 1092- 1093(3): 1234-1242.
[13] 肖富容, 李东坡, 武志杰, 等. 添加生化抑制剂和腐植酸的稳定性增效尿素在黄土中的施用效果[J]. 应用生态学报, 2021, 32(12): 4419-4428.
[13] [Xiao Furong, Li Dongpo, Wu Zhijie, et al. Application effect of high efficiency and stability urea added with biochemical inhibitors and humic acid in loess[J]. Chinese Journal of Applied Ecology, 2021, 32(12): 4419-4428. ]
[14] Tahir M M, Khurshid M, Khan M Z, et al. Lignite-derived humic acid effect on growth of wheat plants in different soils[J]. Pedosphere, 2011, 21(1): 126755, doi: 10.1016/j.jhazmat.2021.126755.
[15] 王先哲. 虻粪有机肥对土壤理化及其微生物群落演变的影响研究[D]. 杭州: 浙江大学, 2020.
[15] [Wang Xianzhe. Effect of blank soldier fly vermicompost on soil physicochemical and microbial community structure[D]. Hangzhou: Zhejiang University, 2020. ]
[16] 周文君. 改性生物质炭及联合苏丹草对石油污染土壤修复效应研究[D]. 乌鲁木齐: 新疆农业大学, 2021.
[16] [Zhou Wenjun. Study on the remediation effect of modified biochar and combined Sudan grass on petroleum contaminated soil[D]. Urumqi: Xinjiang Agricultural University, 2021. ]
[17] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 20-87.
[17] [Lu Rukun. Methods for agrochemical analysis of soil[M]. Beijing: China Agricultural Science and Technology Press, 2000: 20-87. ]
[18] 中科院南京土壤研究所土壤物理室. 土壤物理性质测定法[M]. 北京: 科学出版社, 1978: 3-147.
[18] [Soil Physics Office,Nanjing Institute of Soil, Chinese Academy of Sciences. Determination of soil physical properties[M]. Beijing: Science Press, 1978: 3-147. ]
[19] 张然, 史雷, 马龙, 等. 有机无机肥配施对旱地冬小麦产量及土壤物理性质的影响[J]. 水土保持学报, 2020, 34(6): 325-330, 336.
[19] [Zhang Ran, Shi Lei, Ma Long, et al. Effect of combined application of organic and inorganic fertilizers on winter wheat yield and soil physical properties in dryland[J]. Journal of Soil and Water Conservation, 2020, 34(6): 325-330, 336. ]
[20] Li T, Dai F L, He Y F, et al. An eco-friendly polymer composite fertilizer for soil fixation, slope stability, and erosion control[J]. Polymers, 2022, 14(7): 1461, doi: 10.3390/polym14071461.
[21] 周磊. 改性膨润土对科尔沁沙地土壤改良效应及机制研究[D]. 呼和浩特: 内蒙古农业大学, 2019.
[21] [Zhou Lei. Amelioration effect and mechanism of modified bentonite application to Horqin Sandy soil[D]. Hohhot: Inner Mongolia Agricultural University, 2019. ]
[22] Alghamdi A G, Aly A A, Al-Omran A M, et al. Impact of biochar, bentonite, and compost on physical and chemical characteristics of a sandy soil[J]. Arabian Journal of Geosciences, 2018, 11(21): 670, doi: 10.1007/s12517-018-3939-y.
[23] Aref A, Alkhafaji A R, Chun J A, et al. Characteristics, modification and environmental application of Yemen’s natural bentonite[J]. Arabian Journal of Geosciences, 2014, 7(3): 841-853
[24] 王飞, 管俊芳, 刘玉芹, 等. 新疆某地膨润土离子交换及膨胀性研究[J]. 非金属矿, 2019, 42(1): 73-76.
[24] [Wang Fei, Guan Junfang, Liu Yuqin, et al. Study on ion exchange and swelling properties of Xinjiang bentonite[J]. Non-Metallic Mines, 2019, 42(1): 73-76. ]
[25] 赵旭, 樊军, 王茜, 等. 添加木本泥炭和膨润土对侵蚀退化黑土理化性质的影响[J]. 土壤学报, 2022, 59(4): 953-963.
[25] [Zhao Xu, Fan Jun, Wang Qian, et al. Effects of adding woody peat and bentonite on physical and chemical properties of eroded and degraded blank soil[J]. Acta Pedologica Sinica, 2022, 59(4): 953-963. ]
[26] Yi Z J, Zhao C. Desert “soilization”: An eco-mechanical solution to desertification[J]. Engineering, 2016, 2(3): 270-273.
[27] 郭富兴. 环刀法在干旱半干旱地区田间持水量测定的改进与应用探讨[J]. 水利技术监督, 2021(7): 25-29.
[27] [Guo Fuxing. Improvement and application of ring knife method in field capacity measurement in arid and semi-arid areas[J]. Technical Supervision in Water Resources, 2021(7): 25-29. ]
[28] 马斌, 刘景辉, 杨彦明, 等. 不同膨润土施用量对旱作农田土壤保水能力和燕麦产量的影响[J]. 西北农业学报, 2015, 24(8): 42-49.
[28] [Ma Bin, Liu Jinghui, Yang Yanming, et al. Effect of different bentonite on soil capacity of water-holding and oats yield in rainfed field[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(8): 42-49. ]
[29] 李吉进, 徐秋明, 倪小会, 等. 施用膨润土对土壤含水率和有机肥含量的影响[J]. 华北农学报, 2002, 17(2): 88-91.
[29] [Li Jijin, Xu Qiuming, Ni Xiaohui, et al. Effects of bentonite on content of soil water and soil organic matter[J]. Acta Agriculturae Boreali-Sinica, 2002, 17(2): 88-91. ]
[30] 干方群, 杭小帅, 刘云, 等. 苏南地区膨润土物理化学和矿物学特性研究[J]. 土壤学报, 2018, 55(4): 945-954.
[30] [Gan Fangqun, Hang Xiaoshuai, Liu Yun, et al. Physicochemical and mineralogical properties of bentonite in south Jiangsu, China[J]. Acta Pedologica Sinica, 2018, 55(4): 945-954. ]
[31] 宗莉, 杨效和, 王爱勤. 腐植酸复合材料对沙土理化性质和植物生长的影响[J]. 腐植酸, 2015(2): 15-19, 32.
[31] [Zong Li, Yang Xiaohe, Wang Aiqin. Effect of humic acid composite materials on physic-chemical properties of sandy soil and plant growth[J]. Humic Acid, 2015(2): 15-19, 32. ]
[32] Zhou L, Monreal C M, Xu S T, et al. Effect of bentonite-humic acid application on the improvement of soil structure and maize yield in a sandy soil of a semi-arid region[J]. Geoderma, 2019, 338: 269-280.
[33] 王瑛, 王梅, 苏金娟, 等. 天然钠基膨润土菌渣复合材料对提高沙土保水保肥效应的影响[J]. 农业工程学报, 2020, 36(23): 99-108.
[33] [Wang Ying, Wang Mei, Su Jinjuan, et al. Impacts of natural sodium bentonite mushroom residue composite on improving water and fertilizer retention effect in sandy soil[J]. Transactions of Chinese Society of Agricultural Engineering, 2020, 36(23): 99-108. ]
[34] He M J, Xiong X N, Wang L, et al. A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils[J]. Journal of Hazardous Materials, 2021, 414(20): 125378, doi: 10.1016/j.jhazmat.2021.125378.
[35] Al-Harbi A R, Al-Omran A M. Effect of natural and synthetic soil conditioners on the growth and production of cucumber in greenhouse[J]. Acta Horticulturae, 2003(609): 441-445.
[36] 宋计平, 殷和勤, 杨延杰, 等. 不同土壤调理剂对黄瓜生长、品质及产量的影响[J]. 北方园艺, 2016(23): 19-23.
[36] [Song Jiping, Yin Heqin, Yang Yanjie, et al. Effects of different soil conditioners on growth, yield and quality of cucumber[J]. Northern Horticulture, 2016(23): 19-23. ]
[37] 米俊珍. 旱作谷子施用膨润土蓄水保墒增产生态机制研究[D]. 呼和浩特: 内蒙古农业大学, 2018.
[37] [Mi Junzhen. Study on ecological mechinism of bentonite amendment on soil water holding capacity and millet yield increase in rain-fed cropland[D]. Hohhot: Inner Mongolia Agricultural University, 2018. ]
[38] 苏雪萍. 沙质土壤改良剂对玉米抗旱保苗与土壤改良效应研究[D]. 呼和浩特: 内蒙古农业大学, 2014.
[38] [Su Xueping. Effects of sandy soil amendment on keeping crop seedling against drought and soil improvement to maize[D]. Hohhot: Inner Mongolia Agricultural University, 2014. ]
[39] 周春生, 龚萍, 刘伟, 等. 改性膨润土对沙地土壤改良及紫花苜蓿生长状况的影响[J]. 灌溉排水学报, 2021, 40(7): 16-22.
[39] [Zhou Chunsheng, Gong Ping, Liu Wei, et al. Amending sandy soils with modified bentonite to improve its physical properties and crop growth[J]. Journal of Irrigation and Drainage, 2021, 40(7): 16-22. ]
[40] 郑长文, 管俊芳, 郑佳敏, 等. 矿业领域膨润土应用的研究进展[J]. 矿产综合利用, 2020(3): 22-27.
[40] [Zheng Changwen, Guan Junfang, Zheng Jiamin, et al. Progress in the application of bentonite in mining industry[J]. Multipurpose Utilization of Mineral Resources, 2020(3): 22-27. ]
文章导航

/