生物与土壤

黄土丘陵区带状柠条锦鸡儿林地深层土壤干化及根系分布

  • 于晓燕 ,
  • 汪星 ,
  • 吕雯 ,
  • 高元亢 ,
  • 王永强 ,
  • 王雁超
展开
  • 1.宁夏大学农学院,宁夏 银川 750021
    2.宁夏大学生态环境学院,宁夏 银川 750021
    3.宁夏大学西北退化生态系统恢复与重建教育部重点实验室,宁夏 银川 750021
于晓燕(1998-),女,硕士研究生,主要从事水土保持与荒漠化防治研究. E-mail: nxuyuxy@163.com

收稿日期: 2022-07-24

  修回日期: 2022-11-18

  网络出版日期: 2023-06-05

基金资助

国家自然科学基金项目(32260422);国家自然科学基金项目(32060301);宁夏自然科学基金资助项目(优秀青年项目)(2022AAC05019);宁夏自然科学基金项目(2021AAC03042)

Deep soil desiccation and root distribution of belted Caragana korshinskii forest in loess hilly region

  • Xiaoyan YU ,
  • Xing WANG ,
  • Wen LYU ,
  • Yuankang GAO ,
  • Yongqiang WANG ,
  • Yanchao WANG
Expand
  • 1. School of Agricultural, Ningxia University, Yinchuan 750021, Ningxia, China
    2. School of Ecological Environment, Ningxia University, Yinchuan 750021, Ningxia, China
    3. Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan 750021, Ningxia, China

Received date: 2022-07-24

  Revised date: 2022-11-18

  Online published: 2023-06-05

摘要

针对黄土丘陵区带状柠条锦鸡儿人工林地根系、土壤水分特征及深层土壤干化研究薄弱问题,以宁夏南部山区20 a雨养带状人工柠条锦鸡儿林地为研究对象,选取相似的旱作农田为对照,对0~1000 cm深度土壤水分、柠条锦鸡儿根系垂直分布及其相关性进行分析。结果表明:(1) 20 a人工柠条锦鸡儿林地0~1000 cm深度土壤干化,柠条锦鸡儿林地带内和带间土壤水分含量低于农田;0~1000 cm土层带内土壤水分含量较带间降低1.46%。(2) 在300~1000 cm土层范围内,20 a人工柠条锦鸡儿林地出现了不同的亏缺程度与干燥化程度,带间、带内水分有效性分别为0.21和0.02,供水系数平均值分别为0.49和0.33。(3) 柠条锦鸡儿林地根系主要集中在0~80 cm土层,0~80 cm土层带间、带内根干重分别占总根重的46.33%和45.56%,根表面积密度分别占总根表面积密度的66.58%和63.51%,根长密度分别占总根长密度的59.54%和58.45%。该研究对于深入了解半干旱黄土区人工柠条锦鸡儿林地根系、水分具有积极意义。

本文引用格式

于晓燕 , 汪星 , 吕雯 , 高元亢 , 王永强 , 王雁超 . 黄土丘陵区带状柠条锦鸡儿林地深层土壤干化及根系分布[J]. 干旱区地理, 2023 , 46(5) : 753 -762 . DOI: 10.12118/j.issn.1000-6060.2022.373

Abstract

To explore the deep water status and root distribution of artificial rainfed planting Caragana korshinskii forest in southern Ningxia of China, the 20-year rainfed strip planting C. korshinskii forest was chosen as the research object, a similar farmland for control was selected, and a 0-1000-cm depth of soil moisture, vertical distribution of root, and correlation were analyzed. Soil moisture and root systems were investigated in the center of the C. korshinskii and farmland. The soil drying method was used to determine the soil moisture content, and the root-drill sampling method was used to investigate the root system. The results showed the following: (1) Deep soil desiccation was determined in 0-1000 cm soil layers for the 20-year C. korshinskii forest. Soil water content for the interband and intra-band of C. korshinskii forest was lower than farmland. Compared with the interband soil water, the intra-band soil moisture content was reduced by 1.46% in the 0-1000 cm soil layer. (2) In the range of 300-1000 cm soil layer, the 20-year artificial C. korshinskii appeared in different water deficiency states and soil desiccation. Soil moisture availability for the interband and intra-band were 0.21 and 0.02 and the soil water supply coefficient were 0.49 and 0.33, respectively. (3) C. korshinskii roots mainly distributed in the 0-80 cm soil layer, accounting for 46.33% and 45.56% of the total root weight for interband and intra-band dried roots, respectively. The root surface area density accounted for 66.58% (interband) and 63.51% (intra-band) of the total root surface area density, and root length density accounted for 59.54% (interband) and 58.45% (intra-band) of the total root length density. This study has positive significance for in-depth understanding of root systems, water content, and sustainable management of artificial vegetation in semiarid loess areas.

参考文献

[1] 傅伯杰, 马克明, 周华峰, 等. 黄土丘陵区土地利用结构对土壤养分分布的影响[J]. 科学通报, 1998, 43(22): 2444-2448.
[1] [Fu Bojie, Ma Keming, Zhou Huafeng, et al. Effects of land use structure on soil nutrient distribution in loess hilly region[J]. Chinese Science Bulletin, 1998, 43(22): 2444-2448. ]
[2] 李保国, 任图生, 张佳宝. 土壤物理学研究的现状、挑战与任务[J]. 土壤学报, 2008, 45(5): 810-816.
[2] [Li Baoguo, Ren Tusheng, Zhang Jiabao. Current status, challenges, and missions in soil physics[J]. Acta Pedologica Sinica, 2008, 45(5): 810-816. ]
[3] Yang F T, Feng Z M, Wang H M, et al. Deep soil water extraction helps to drought avoidance but shallow soil water uptake during dry season controls the inter-annual variation in tree growth in four subtropical plantations[J]. Agricultural and Forest Meteorology, 2017, 234-235: 106-114.
[4] 张毓涛, 胡莎莎, 李吉玫, 等. 新疆3种主要森林类型根系生物量变化特征研究[J]. 干旱区地理, 2013, 36(2): 269-276.
[4] [Zhang Yutao, Hu Shasha, Li Jimei, et al. Study on root biomass change characteristics of three main forest types in Xinjiang[J]. Arid Land Geography, 2013, 36(2): 269-276. ]
[5] 牛海, 李和平, 赵萌莉, 等. 毛乌素沙地不同水分梯度根系垂直分布与土壤水分关系的研究[J]. 干旱区资源与环境, 2008, 22(2): 157-163.
[5] [Niu Hai, Li Heping, Zhao Mengli, et al. Relationship between soil water content and vertical distribution of root system under different ground water gradients in Maowusu Sandy Land[J]. Journal of Arid Land Resources and Environment, 2008, 22(2): 157-163. ]
[6] 梁海斌, 史建伟, 牛俊杰, 等. 晋西北黄土丘陵区不同林龄柠条地土壤水分变化特征研究[J]. 干旱区资源与环境, 2014, 28(6): 143-148.
[6] [Liang Haibin, Shi Jianwei, Niu Junjie, et al. Study on the characteristics of the soil moisture variation in different-aged Caragana korshinskii Kom in loess hilly region, northwestern Shanxi[J]. Journal of Arid Land Resources and Environment, 2014, 28(6): 143-148. ]
[7] 刘增文, 王佑民. 人工油松林蒸腾耗水及林地水分动态特征的研究[J]. 水土保持通报, 1990, 10(6): 78-84.
[7] [Liu Zengwen, Wang Youmin. Study on transpiration water consumption of artificial Pinus tabulaeformis and water dynamic characteristics of forest land[J]. Bulletion of Soil and Water Conservation, 1990, 10(6): 78-84. ]
[8] 艾宁, 张智勇, 宗巧鱼, 等. 水蚀风蚀交错区典型人工林土壤水分亏缺特征[J]. 森林与环境学报, 2021, 41(3): 272-280.
[8] [Ai Ning, Zhang Zhiyong, Zong Qiaoyu. Characteristics of soil water deficit in typical forest land in a water-wind erosion crisscross area[J]. Journal of Forest and Environment, 2021, 41(3): 272-280. ]
[9] 杨磊, 卫伟, 莫保儒, 等. 半干旱黄土丘陵区不同人工植被恢复土壤水分的相对亏缺[J]. 生态学报, 2011, 31(11): 3060-3068.
[9] [Yang Lei, Mo Baoru, et al. Soil water deficit under different artificial vegetation restoration in the semi-arid hilly region of the Loess Plateau[J]. Acta Ecologica Sinica, 2011, 31(11): 3060-3068. ]
[10] 王志强, 刘宝元, 刘刚, 等. 黄土丘陵区人工林草植被耗水深度研究[J]. 中国科学: 地球科学, 2009, 39(9): 1297-1303.
[10] [Wang Zhiqiang, Liu Baoyuan, Liu Gang, et al. Soil water depletion depth by planted vegetation on the Loess Plateau[J]. Scientia Sinica (Terrae), 2009, 39(9): 1297-1303. ]
[11] 阿拉木萨, 蒋德明, 裴铁璠. 沙地人工小叶锦鸡儿植被根系分布与土壤水分关系研究[J]. 水土保持学报, 2003, 17(3): 78-81.
[11] [Alamusa, Jiang Deming, Pei Tiefan. Relationship between root system distribution and soil moisture of artificial Caragana icrophylla vegetation in sandy land[J]. Journal of Soil and Water Conservation, 2003, 17(3): 78-81. ]
[12] 张喜英, 袁小良, 韩润娥, 等. 冬小麦根系生长规律及土壤环境条件对其影响的研究[J]. 生态农业研究, 1994, 2(3): 64-70.
[12] [Zhang Xiying, Yuan Xiaoliang, Han Run’e, et al. Effects of soil conditions on root growth of winter wheat[J]. Eco-agriculture Research, 1994, 2(3): 64-70. ]
[13] Williams A, de Vries F T. Plant root exudation under drought: Implications for ecosystem functioning[J]. The New Phytologist, 2020, 225(5): 1899-1905.
[14] Oppenheimer-Shaanan Y, Jakoby G, Starr M L, et al. A dynamic rhizosphere interplay between tree roots and soil bacteria under drought stress[J]. eLife, 2022, 11: e79679, doi: 10.7554/eLife.79679.
[15] Xie H T, Chen Z M, Feng X X, et al. L-theanine exuded from Camellia sinensis roots regulates element cycling in soil by shaping the rhizosphere microbiome assembly[J]. The Science of the Total Environment, 2022, 837: 155801, doi: 10.1016/j.scitotenv.2022. 155801.
[16] He W C, Luo C, Wang Y, et al. Response strategies of root system architecture to soil environment: A case study of single-species Cupressus funebris plantations[J]. Frontiers in Plant Science, 2022, 13: 822223, doi: 10.3389/fpls.2022.822223.
[17] 包维斌, 王幼奇, 刘鹏, 等. 宁南山区不同土地利用类型下土壤水分分布及其干燥化特征[J]. 草地学报, 2020, 28(3): 775-783.
[17] [Bao Weibin, Wang Youqi, Liu Peng, et al. Characteristics of soil desiccation and soil water distribution in different land types in mountaintion area of southern Ningxia[J]. Acta Agrestia Sinica, 2020, 28(3): 775-783. ]
[18] 包维斌, 王幼奇, 刘鹏, 等. 宁南山区不同林龄杏树地土壤干层特征研究[J]. 西北农林科技大学学报(自然科学版), 2020, 48(8): 101-110.
[18] [Bao Weibin, Wang Youqi, Liu Peng, et al. Evolution of dry layer of apricot land at different ages in southern Ningxia mountain areas[J]. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(8): 101-110. ]
[19] 潘占兵, 李生宝, 蔡进军, 等. 宁南山区苜蓿地土壤水分和养分变异规律研究[J]. 水土保持通报, 2011, 31(2): 61-67.
[19] [Pan Zhanbing, Li Shengbao, Cai Jinjun, et al. Variations of soil moisture and nutrients in alfalfa field in southern Ningxia Hui Autonomous Region[J]. Bulletin of Soil and Water Conservation, 2011, 31(2): 61-67. ]
[20] 陈海滨, 刘淑明, 党坤良, 等. 黄土高原沟壑区林地土壤水分特征的研究(Ⅱ)——土壤水分有效性及其亏缺状况的分析[J]. 西北林学院学报, 2004, 19(1): 5-8.
[20] [Chen Haibin, Liu Shuming, Dang Kunliang, et al. A study on forest soil moisture features of gullied loess region of the Loess Plateau: Analyses on the soil moisture availability and deficit state[J]. Journal of Northwest Forestry University, 2004, 19(1): 5-8. ]
[21] 易亮, 李凯荣, 张冠华, 等. 黄土高原人工林地土壤水分亏缺研究[J]. 西北林学院学报, 2009, 24(5): 5-9, 49.
[21] [Yi Liang, Li Kairong, Zhang Guanhua, et al. Soil moisture deficit in artificial forest land in Loess Plateau[J]. Journal of Northwest Forestry University, 2009, 24(5): 5-9, 49. ]
[22] 钞锦龙, 胡磊, 雷添杰, 等. 晋陕峡谷河流阶地枣林土壤水分有效性及干燥化分析[J]. 干旱地区农业研究, 2020, 38(5): 236-242.
[22] [Chao Jinlong, Hu Lei, Lei Tianjie, et al. An analysis on soil moisture availability and dryness of jujube forest in river terrace of Jinshan Valley[J]. Agricultural Research in the Arid Areas, 2020, 38(5): 236-242. ]
[23] 张珂萌, 汪星, 汪有科, 等. 典型地面覆盖下黄土丘陵区干化土壤深层水分变化研究[J]. 农业机械学报, 2022, 53(2): 336-345.
[23] [Zhang Kemeng, Wang Xing, Wang Youke, et al. Water variation of deep desiccation soil in loess hilly area under typical mulching[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 336-345. ]
[24] 李军, 陈兵, 李小芳, 等. 黄土高原不同植被类型区人工林地深层土壤干燥化效应[J]. 生态学报, 2008, 28(4): 1429-1445.
[24] [Li Jun, Chen Bing, Li Xiaofang, et al. Effects of deep soil desiccation on artificial forestlands in different vegetation zones on the Loess Plateau of China[J]. Acta Ecologica Sinica, 2008, 28(4): 1429-1445. ]
[25] Wang Y Q, Shao M A, Shao H B. A preliminary investigation of the dynamic characteristics of dried soil layers on the Loess Plateau of China[J]. Journal of Hydrology, 2010, 381(1-2): 9-17.
[26] Wang Y Q, Shao M A, Zhu Y J. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China[J]. Agriculture and Forest Meteorology, 2011, 151(4): 437-448.
[27] Wang Y Q, Shao M A, Liu Z P. Large-scale spatial variability of dried soil layers and related factors across the entire Loess Plateau of China[J]. Geoderma, 2010, 159(1-2): 99-108.
[28] Chen H S, Shao M A, Li Y Y. Soil desiccation in the Loess Plateau of China[J]. Geoderma, 2008, 143(1): 91-100.
[29] 孙姗姗, 刘新平, 王翠萍, 等. 半干旱沙地樟子松林降雨再分配特征[J]. 干旱区地理, 2021, 44(1): 109-117.
[29] [Sun Shanshan, Liu Xinping, Wang Cuiping, et al. Precipitation redistribution characteristics of Pinus sylvestris var. mongolica in semiarid sandy land[J]. Arid Land Geography, 2021, 44(1): 109-117. ]
[30] 冯金超, 党宏忠, 王檬檬, 等. 晋西黄土区苹果园生长季土壤水分动态[J]. 水土保持研究, 2020, 27(1): 139-145.
[30] [Feng Jinchao, Dang Hongzhong, Wang Mengmeng, et al. Dynamics of soil moisture in apple orchards in the growing season in the loess region of western Shanxi[J]. Research of Soil and Water Conservation, 2020, 27(1): 139-145. ]
文章导航

/