气候与水文

2001—2020年蒙古高原昼夜非对称变暖对植被返青期的影响

  • 张港栋 ,
  • 包刚 ,
  • 元志辉 ,
  • 温都日娜
展开
  • 1.内蒙古师范大学地理科学学院,内蒙古 呼和浩特 010022
    2.内蒙古师范大学内蒙古自治区遥感与地理信息系统重点实验室,内蒙古 呼和浩特 010022
张港栋(1997-),男,硕士研究生,主要从事资源环境与遥感研究. E-mail: zgdong9797@163.com

收稿日期: 2022-08-13

  修回日期: 2022-09-30

  网络出版日期: 2023-06-05

基金资助

国家自然科学基金项目(41861021);内蒙古自治区自然科学基金项目(2021MS04014)

Effects of asymmetric warming of daytime and nighttime on the start of growing season on the Mongolian Plateau from 2001 to 2020

  • Gangdong ZHANG ,
  • Gang BAO ,
  • Zhihui YUAN ,
  • Durina WEN
Expand
  • 1. College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
    2. Inner Mongolia Key Laboratory of Remote Sensing & Geography Information System, Hohhot 010022, Inner Mongolia, China

Received date: 2022-08-13

  Revised date: 2022-09-30

  Online published: 2023-06-05

摘要

基于2001—2020年归一化植被指数(NDVI)、增强型植被指数(EVI)2种遥感植被指数以及蒙古高原94个气象站点的月最高、最低温和降水量数据,利用累积NDVI的Logistic曲线曲率极值法和动态阈值法2种物候识别方法提取蒙古高原植被返青期,分析蒙古高原昼夜非对称变暖的时空变化及其对植被返青期的影响。结果表明:(1) 2001—2020年蒙古高原生长季开始前6个月(上一年11月—当年4月)平均最高温[0.7 ℃·(10a)-1]和最低温[0.3 ℃·(10a)-1]均呈上升趋势,最高温的变暖速率是最低温的2.3倍。(2) 季前昼夜非对称变暖对植被返青期均产生提前作用,但与最高温相比,最低温对返青期的影响程度更大,且影响范围更为广泛。(3) 季前昼夜非对称变暖对不同植被类型返青期产生不同影响,白天变暖对灌丛、农田和稀疏植被返青期的影响更明显,夜间变暖对森林和草地返青期的影响更强,特别是森林地区(25.5%)。研究白天和夜间非对称变暖对蒙古高原植被物候的影响,对揭示温度对春季植被物候的影响机制有重要意义。

本文引用格式

张港栋 , 包刚 , 元志辉 , 温都日娜 . 2001—2020年蒙古高原昼夜非对称变暖对植被返青期的影响[J]. 干旱区地理, 2023 , 46(5) : 700 -710 . DOI: 10.12118/j.issn.1000-6060.2022.395

Abstract

Two phenological identification methods, namely, the logistic curve curvature extreme value method and the dynamic threshold method of cumulative NDVI, were used to extract the data based on the normalized difference vegetation index (NDVI) and enhanced vegetation index remote sensing vegetation indices from 2001 to 2020, as well as the highest temperature, the lowest temperature, and precipitation data of 94 meteorological stations in the Mongolian Plateau. The temporal and spatial changes of the Mongolian Plateau’s asymmetric circadian warming and its impact on the start of growing season were analyzed. The research shows the following: (1) The average maximum temperature [0.7 ℃·(10a)-1] and the minimum temperature [0.3 ℃·(10a)-1] in the preseason 6 months (November of the previous year to April of the current year) in the Mongolian Plateau from 2001 to 2020 both showed an upward trend, and the warming rate of the highest temperature was 2.3 times that of the lowest temperature. (2) The asymmetric warming of the preseason day and night has an early effect on the start of growing season; however, compared with the highest temperature, the lowest temperature has a greater impact on the start of growing season, and the impact range is wider. (3) The preseason asymmetrical warming of day and night has different effects on the start of growing season of different vegetation types. The effect of daytime warming on the start of the growing season of shrubs, farmland, and sparse vegetation is more obvious, and the effect of nighttime warming on the start of the growing season of forest and grassland is more obvious, especially in forest areas (25.5%). Studying the effects of daytime and nighttime asymmetric warming on vegetation phenology on the Mongolian Plateau is of great significance to reveal the mechanism of temperature effects on vegetation phenology in spring.

参考文献

[1] Piao S L, Friedlingstein P, Ciais P, et al. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades[J]. Global Biogeochemical Cycles, 2007, 21(3): 128911666, doi: 10.1029/2006gb002888.
[2] Wu D H, Zhao X, Liang S L, et al. Time-lag effects of global vegetation responses to climate change[J]. Global Change Biology, 2015, 21(9): 3520-3531.
[3] Yu H Y, Luedeling E, Xu J C. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2010, 107(51): 22151-22156.
[4] Shen M G, Piao S L, Chen X Q, et al. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau[J]. Global Change Biology, 2016, 22(9): 3057-3066.
[5] Liu Q, Fu Y S, Zhu Z C, et al. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology[J]. Global Change Biology, 2016, 22(11): 3702-3711.
[6] Welch J R, Vincent J, Auffhammer M, et al. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures[J]. Proceedings of the National Academy of Sciences, 2010, 107(33): 14562-14567.
[7] Badeck F W, Bondeau A, B?ttcher K, et al. Responses of spring phenology to climate change[J]. New Phytologist, 2004, 162(2): 295-309.
[8] Zhu Z C, Piao S L, Myneni R B, et al. Greening of the earth and its drivers[J]. Nature Climate Change, 2016, 6(8): 791-795.
[9] Cong N, Shen M G, Yang W, et al. Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland[J]. International Journal of Biometeorology, 2017, 61(8): 1433-1444.
[10] Zhang B W, Cui L L, Shi J, et al. Vegetation dynamics and their response to climatic variability in China[J]. Advances in Meteorology, 2017, 2017(14): 1-10.
[11] IPCC. Climate Change 2022: Impacts, adaptation, and vulnerability[R]. Cambridge: Cambridge University Press, 2022.
[12] Davy R, Esau I, Chernokulsky A V, et al. Diurnal asymmetry to the observed global warming[J]. International Journal of Climatology, 2017, 37(1): 79-93.
[13] Peng S S, Piao S L, Ciais P, et al. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation[J]. Nature, 2013, 501(7465): 88-92.
[14] Ma L Q, Xia H M, Meng Q M. Spatiotemporal variability of asymmetric daytime and night-time warming and its effects on vegetation in the Yellow River Basin from 1982 to 2015[J]. Sensors (Basel), 2019, 19(8): 1832, doi: 10.3390/s19081832.
[15] Xu L, Myneni R B, Chapin Iii F S, et al. Temperature and vegetation seasonality diminishment over northern lands[J]. Nature Climate Change, 2013, 3(6): 581-586.
[16] Piao S L, Tan J G, Chen A P, et al. Leaf onset in the northern hemisphere triggered by daytime temperature[J]. Nature Communications, 2015, 6(1): 6911, doi: 10.1038/ncomms7911.
[17] Shen X J, Liu B H, Henderson M, et al. Asymmetric effects of daytime and nighttime warming on spring phenology in the temperate grasslands of China[J]. Agricultural and Forest Meteorology, 2018, 259: 240-249.
[18] Luo M, Meng F H, Sa C L, et al. Response of vegetation phenology to soil moisture dynamics in the Mongolian Plateau[J]. Catena, 2021, 206: 105505, doi: 10.1016/j.catena.2021.105505.
[19] 魏云洁, 甄霖, Ochirbat Batkhishig, 等. 蒙古高原生态服务消费空间差异的实证研究[J]. 资源科学, 2009, 31(10): 1677-1684.
[19] [Wei Yunjie, Zhen Lin, Ochirbat Batkhishig, et al. Empirical study on consumption of ecosystem services and its spatial differences over the Mongolian Plateau[J]. Resources Science, 2009, 31(10): 1677-1684. ]
[20] 刘钟龄. 蒙古高原景观生态区域的分析[J]. 干旱区资源与环境, 1993, 7(3): 256-261.
[20] [Liu Zhongling. Analysis of landscape ecoregion on the Mongolian Plateau[J]. Journal of Arid Land Resources & Environment, 1993, 7(3): 256-261. ]
[21] 杜佳梦, 包刚, 佟斯琴, 等. 1982—2015年蒙古国植被覆盖变化及其与气候变化和人类活动的关系[J]. 草业学报, 2021, 30(2): 1-13.
[21] [Du Jiameng, Bao Gang, Tong Siqin, et al. Variations in vegetation cover and its relationship with climate change and human activities in Mongolia during the period[J]. Acta Prataculturae Sinica, 2021, 30(2): 1-13. ]
[22] 温都日娜, 包玉海, 银山, 等. 2000—2014年蒙古高原植被覆盖时空变化特征及其对地表水热因子的响应[J]. 冰川冻土, 2017, 39(6): 1345-1356.
[22] [Wen Durina, Bao Yuhai, Yin Shan, et al. The spatial and temporal variation of vegetation cover in Mongolian Plateau and its response to surface hydrothermal factors from 2000 through 2014[J]. Journal of Glaciology and Geocryology, 2017, 39(6): 1345-1356. ]
[23] 包刚, 包玉海, 覃志豪, 等. 近10年蒙古高原植被覆盖变化及其对气候的季节响应[J]. 地理科学, 2013, 33(5): 613-621.
[23] [Bao Gang, Bao Yuhai, Qin Zhihao, et al. Vegetation cover changes in Mongolian Plateau and its response to seasonal climate changes in recent 10 years[J]. Scientia Geographica Sinica, 2013, 33(5): 613-621. ]
[24] Piao S L, Cui M D, Chen A P, et al. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau[J]. Agricultural and Forest Meteorology, 2011, 151(12): 1599-1608.
[25] Yu F F, Price K, Ellis J, et al. Response of seasonal vegetation development to climatic variations in eastern Central Asia[J]. Remote Sensing of Environment, 2003, 87(1): 42-54.
[26] 穆少杰, 李建龙, 陈奕兆, 等. 2001—2010年内蒙古植被覆盖度时空变化特征[J]. 地理学报, 2012, 67(9): 1255-1268.
[26] [Mu Shaojie, Li Jianlong, Chen Yizhao, et al. Spatial differences of variations of vegetation coverage in Inner Mongolia during 2001—2010[J]. Acta Geographica Sinica, 2012, 67(9): 1255-1268. ]
[27] 丁明军, 张镱锂, 孙晓敏, 等. 近10年青藏高原高寒草地物候时空变化特征分析[J]. 科学通报, 2012, 57(33): 3185-3194.
[27] [Ding Mingjun, Zhang Yili, Sun Xiaomin, et al. Temporal and spatial variation of alpine grassland phenology over Qinghai-Tibet Plateau in recent 10 years[J]. Chinese Science Bulletin, 2012, 57(33): 3185-3194. ]
[28] Garonna I, Jong R D, Wit A D, et al. Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982—2011)[J]. Global Change Biology, 2014, 20(11): 3457-3470.
[29] Roerink G R, Menenti M, Verhoef W. Reconstructing cloudfree NDVI composites using Fourier analysis of time series[J]. International Journal of Remote Sensing, 2010, 21(9): 1911-1917.
[30] Hou X H, Gao S A, Niu Z, et al. Extracting grassland vegetation phenology in north China based on cumulative spot-vegetation NDVI data[J]. International Journal of Remote Sensing, 2014, 35(9): 3316-3330.
[31] Piao S L, Fang J Y, Zhou L M, et al. Variations in satellite-derived phenology in China’s temperate vegetation[J]. Global Change Biology, 2006, 12(4): 672-685.
[32] Bao G, Chen J Q, Chopping M, et al. Dynamics of net primary productivity on the Mongolian Plateau: Joint regulations of phenology and drought[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 81: 85-97.
[33] 元志辉, 雷军, 包刚, 等. 土地利用/覆盖变化对浑善达克沙地植被覆盖度的影响[J]. 水土保持学报, 2016, 30(6): 330-338.
[33] [Yuan Zhihui, Lei Jun, Bao Gang, et al. The impacts of land use/cover change on vegetation coverage in the Otindag Sandland[J]. Journal of Soil and Water Conservation, 2016, 30(6): 330-338. ]
[34] 张戈丽, 徐兴良, 周才平, 等. 近30年来呼伦贝尔地区草地植被变化对气候变化的响应[J]. 地理学报, 2011, 66(1): 47-58.
[34] [Zhang Geli, Xu Xingliang, Zhou Caiping, et al. Responses of grassland vegetation to climatic variations on different temporal scales in Hulun Buir Grassland in the past 30 years[J]. Scientia Geographica Sinica, 2011, 66(1): 47-58. ]
[35] 姜康, 包刚, 乌兰图雅, 等. 2001—2017年蒙古高原不同植被返青期变化及其对气候变化的响应[J]. 生态学杂志, 2019, 38(8): 2490-2499.
[35] [Jiang Kang, Bao Gang, Wulantuya, et al. Variations in spring phenology of different vegetation types in the Mongolian Plateau and its responses to climate change during 2001—2017[J]. Chinese Journal of Ecology, 2019, 38(8): 2490-2499. ]
[36] 邵亚婷, 王卷乐, 严欣荣. 蒙古国植被物候特征及其对地理要素的响应[J]. 地理研究, 2021, 40(11): 3029-3045.
[36] [Shao Yating, Wang Juanle, Yan Xinrong. The phenological characteristics of Mongolian vegetation and its response to geographical elements[J]. Geographical Research, 2021, 40(11): 3092-3045. ]
[37] 包刚, 包玉龙, 阿拉腾图娅, 等. 1982—2011年蒙古高原植被物候时空动态变化[J]. 遥感技术与应用, 2017, 32(5): 866-874.
[37] [Bao Gang, Bao Yulong, A Latengtuya, et al. Spatio-temporal dynamics of vegetation phenology in the Mongolian Plateau during 1982—2011[J]. Remote Sensing Technology and Application, 2017, 32(5): 866-874. ]
[38] 黄文琳, 张强, 孔冬冬, 等. 1982—2013年内蒙古地区植被物候对干旱变化的响应[J]. 生态学报, 2019, 39(13): 4953-4965.
[38] [Huang Wenlin, Zhang Qiang, Kong Dongdong, et al. Response of vegetation phenology to drought in Inner Mongolia from 1982 to 2013[J]. Acta Ecologica Sinica, 2019, 39(13): 4953-4965. ]
[39] 秦格霞, 吴静, 李纯斌, 等. 中国北方草地植被物候变化及其对气候变化的响应[J]. 应用生态学报, 2019, 30(12): 4099-4107.
[39] [Qin Gexia, Wu Jing, Li Chunbin, et al. Grassland vegetation phenology change and its response to climate changes in north China[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4099-4107. ]
[40] 元志辉, 银山, 萨楚拉, 等. 近20 a呼和浩特市城市化对植被物候的影响[J]. 干旱区地理, 2022, 45(6): 1890-1898.
[40] [Yuan Zhihui, Yin Shan, Sa Chula, et al. Effects of urbanization on vegetation phenology in Hohhot in the recent 20 years[J]. Arid Land Geography, 2022, 45(6): 1890-1898.
[41] Xia J Y, Chen J Q, Piao S L, et al. Terrestrial carbon cycle affected by non-uniform climate warming[J]. Nature Geoscience, 2014, 7(3): 173-180.
[42] Zhou L M, Dai A G, Dai Y J, et al. Spatial dependence of diurnal temperature range trends on precipitation from 1950 to 2004[J]. Climate Dynamics, 2008, 32(2): 429-440.
[43] Du Z Q, Zhao J, Liu X J, et al. Recent asymmetric warming trends of daytime versus nighttime and their linkages with vegetation greenness in temperate China[J]. Environmental Science and Pollution Research, 2019, 26(35): 35717-35727.
[44] Schwartz M D, Hanes J M. Continental-scale phenology: Warming and chilling[J]. International Journal of Climatology, 2009, 30(11): 1595-1598.
[45] Vitasse Y, Lenz A, Korner C. The interaction between freezing tolerance and phenology in temperate deciduous trees[J]. Frontiers in Plant Science, 2014, 5: 541, doi: 10.3389/fpls.2014.00541.
[46] Yi S H, Li N, Xiang B, et al. Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(3): 1186-1199.
文章导航

/