植物生态

祁连山排露沟流域青海云杉林更新特征对地形因子的响应

  • 芦雄英 ,
  • 刘贤德 ,
  • 马瑞 ,
  • 赵维俊 ,
  • 敬文茂 ,
  • 何晓玲 ,
  • 赵长兴
展开
  • 1.甘肃农业大学林学院,甘肃 兰州 730070
    2.甘肃省祁连山水源涵养林研究院(甘肃祁连山森林生态系统国家定位观测研究站),甘肃 张掖 734000
    3.西北农林科技大学资源环境学院,陕西 咸阳 712000
    4.兰州大学草地农业科技学院,甘肃 兰州 730000
芦雄英(1996-),女,在读硕士,主要从事森林培育研究. E-mail: 2995472727@qq.com

收稿日期: 2022-07-14

  修回日期: 2022-09-26

  网络出版日期: 2023-04-28

基金资助

国家自然科学基金(32060247);国家自然科学基金(U21A20468);省级林业和草原自列科技项目(2022kj005);甘肃祁连山森林生态系统国家定位观测研究站运行补助(2022132262)

Response of Picea crassifolia forest regeneration characteristics to topographic factors in Pailugou watershed of Qilian Mountains

  • Xiongying LU ,
  • Xiande LIU ,
  • Rui MA ,
  • Weijun ZHAO ,
  • Wenmao JING ,
  • Xiaoling HE ,
  • Changxing ZHAO
Expand
  • 1. Forestry College, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2. Qilian Mountain Water Conservation Forest Research Institute of Gansu Province (Gansu Qilian Mountain Forest Ecosystem National Positioning Observation and Research Station), Zhangye 734000, Gansu, China
    3. School of Resources and Environment, Northwest A & F University, Xianyang 712000, Shaanxi, China
    4. College of Grassland Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China

Received date: 2022-07-14

  Revised date: 2022-09-26

  Online published: 2023-04-28

摘要

为探讨祁连山青海云杉林微地形对天然更新苗的影响,选择祁连山排露沟流域分布的青海云杉为研究对象,采用C-均值模糊聚类分析将该流域15个固定样地的地形参数(海拔、凹凸度、坡度)划分为4种不同的微地形生境,研究微地形生境对更新苗的更新特征(更新苗密度、平均冠幅、平均基径和平均株高)产生的影响。结果表明:(1)该流域的15个固定样地通过聚类分析将微地形生境划分为4类:高海拔陡坡、高海拔斜坡、低海拔凸地和低海拔凹地。(2)不同微地形条件下更新苗密度和平均株高从高到低依次为低海拔凹地、低海拔凸地、高海拔斜坡、高海拔陡坡;更新苗的平均冠幅和平均基径从大到小依次为低海拔凸地>高海拔斜坡>低海拔凹地>高海拔陡坡;在平均株高方面,高海拔陡坡显著低于其他3种微地形。不同的海拔、坡度、坡向、坡位对更新苗的存活率和生长发育过程具有显著性影响。(3)更新苗在不同微地形下大部分表现为聚集分布,聚集强度从高到低表现为高海拔陡坡>低海拔凸地>低海拔凹地>高海拔斜坡。(4)从相关性分析的结果中显示,海拔、坡度、坡位与更新苗之间存在显著相关性(P<0.05)。综上所述,青海云杉林的天然更新受微地形生境的影响较为显著(P<0.05),在低海拔凸地和低海拔凹地中更新苗比较适合定居和生长发育。

本文引用格式

芦雄英 , 刘贤德 , 马瑞 , 赵维俊 , 敬文茂 , 何晓玲 , 赵长兴 . 祁连山排露沟流域青海云杉林更新特征对地形因子的响应[J]. 干旱区地理, 2023 , 46(4) : 604 -613 . DOI: 10.12118/j.issn.1000-6060.2022.350

Abstract

In order to explore the influence of microtopography on the natural regeneration of Picea crassifolia seedlings in Qilian Mountains, Picea crassifolia forest was selected as the research object, and the topographic parameters (altitude, convexity and slope) of 15 fixed plots in the watershed were divided into four different microtopographic habitats by C-mean fuzzy clustering, and the effects of microtopographic habitats on the renewal characteristics (renewal seedling density, average crown width, mean base diameter and average plant height) of the regeneration seedlings were studied. The results show that: (1) The average crown width and mean base diameter of regenerated seedlings were in the order of low-altitude convex land>high-altitude slope>low-altitude concave land>high-altitude steep slope. The average plant height on high-altitude steep slopes was considerably lower than that in the other three microtopographies. Thus, different altitudes, slopes, aspects, and slope positions considerably affected the survival rate and growth process of regeneration seedlings. (2) The renewal seedling density and average plant height under different microtopographic conditions were as follows: low-altitude concave land, low-altitude convex land, high-altitude slope, and high-altitude steep slope. (3) Most of the regenerated seedlings showed an aggregated distribution under different microtopography in the order of high-altitude steep slope>low-altitude concave>low-altitude convex>high-altitude slope. (4) The results of the correlation analysis showed that there was a significant correlation between altitude, slope, slope position, and regenerated seedlings (P<0.05). In summary, the natural regeneration of Picea crassifolia forest was significantly affected by microtopographic habitat (P<0.05), and seedlings were more suitable for settlement and growth in low-altitude convex land and low-altitude concave land.

参考文献

[1] Moktan M R, Gratzer G, Richards W H, et al. Regeneration of mixed conifer forests under group tree selection harvest management in western Bhutan Himalayas[J]. Forest Ecology and Management, 2009, 257(10): 2121-2132.
[2] Wright S J, Muller-Landau H C, Calderón O, et al. Annual and spatial variation in seed fall and seedling recruitment in a neotropical forest[J]. Ecology, 2005, 86(4): 848-860.
[3] 陈圣宾, 宋爱琴, 李振基. 森林幼苗更新对光环境异质性的响应研究进展[J]. 应用生态学报, 2005, 16(2): 365-370.
[3] [Chen Shengbin, Song Aiqin, Li Zhenji. Research advance in response of forest seedling regeneration to light environmental heterogeneity[J]. Chinese Journal of Applied Ecology, 2005, 16(2): 365-370.]
[4] Muscolo A, Sidari M, Mercurio R. Influence of gap size on organic matter decomposition, microbial biomass and nutrient cycle in Calabrian pine (Pinus laricio, Poiret) stands[J]. Forest Ecology and Management, 2007, 242(2-3): 412-418.
[5] 陈永富. 森林天然更新障碍机制研究进展[J]. 世界林业研究, 2012, 25(2): 41-45.
[5] [Chen Yongfu. Research progress on the mechanism of natural regeneration barriers in forests[J]. World Forestry Research, 2012, 25(2): 41-45.]
[6] Collins R J, Carson W P. The effects of environment and life stage on Quercus abundance in the eastern deciduous forest, USA: Are sapling densities most responsive to environmental gradients[J]. Forest Ecology and Management, 2004, 201(2-3): 241-258.
[7] Scherrer D, K?rner C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming[J]. Journal of Biogeography, 2011, 38(2): 406-416.
[8] 刘海丰, 桑卫国, 薛达元. 暖温带森林优势种群的地形生境变异性[J]. 生态学杂志, 2013, 32(4): 795-801.
[8] [Liu Haifeng, Sang Weiguo, Xue Dayuan. Topographical habitat variability of dominant species populations in a warm temperate forest[J]. Chinese Journal of Ecology, 2013, 32(4): 795-801.]
[9] Daws M I, Pearson T R H, Burslem D F R P, et al. Effects of topographic position, leaf litter and seed size on seedling demography in a semi-deciduous tropical forest in Panamá[J]. Plant Ecology, 2005, 179(1): 93-105.
[10] Lu J, Johnson D J, Qiao X, et al. Density dependence and habitat preference shape seedling survival in a subtropical forest in central China[J]. Journal of Plant Ecology, 2015, 8(6): 568-577.
[11] 赵家豪, 孙晓丹, 叶钰倩, 等. 微地形对江西武夷山南方铁杉针阔混交林幼树更新的影响[J]. 生态学报, 2022, 42(6): 2357-2367.
[11] [Zhao Jiahao, Sun Xiaodan, Ye Yuqian, et al. Effect of micro-topography on the saplings regeneration in the coniferous (Tsuga chinensis var. tchekiangensis) and broadleaf mixed forest in the Wuyishan, Jiangxi Province[J]. Acta Ecologica Sinica, 2022, 42(6): 2357-2367.]
[12] 赵雪, 刘妍妍, 金光泽. 地形对阔叶红松林幼苗更新的影响[J]. 应用生态学报, 2013, 24(11): 3035-3042.
[12] [Zhao Xue, Liu Yanyan, Jin Guangze. Effects of topography on seedling regeneration in a mixed broad-leaved Korean pine forest in Xiaoxing’an Mountains, northeast China[J]. Chinese Journal of Applied Ecology, 2013, 24(11): 3035-3042.]
[13] 郭小芹, 李光明, 孙占峰, 等. 祁连山及周边降水分布聚类检验和典型流域增雨效果评价[J]. 干旱区地理, 2022, 45(3): 706-714.
[13] [Guo Xiaoqin, Li Guangming, Sun Zhanfeng, et al. Cluster analysis with statistical test of precipitation distribution in Qilian Mountains and its surrounding area and evaluation of artificial precipitation enhancement in typical watershed[J]. Arid Land Geography, 2022, 45(3): 706-714.]
[14] 赵传燕, 别强, 彭焕华. 祁连山北坡青海云杉林生境特征分析[J]. 地理学报, 2010, 65(1): 113-121.
[14] [Zhao Chuanyan, Bie Qiang, Peng Huanhua. Analysis of the niche space of Picea crassifolia on the northern slope of Qilian Mountains[J]. Acta Geographica Sinica, 2010, 65(1): 113-121.]
[15] 杨晓霞, 赵锦梅, 张雪, 等. 祁连山东段山地典型灌丛枯落物及土壤水源涵养功能研究[J]. 干旱区地理, 2022, 45(1): 197-207.
[15] [Yang Xiaoxia, Zhao Jinmei, Zhang Xue, et al. Litter and soil water conservation function of typical shrubs in eastern Qilian Mountains[J]. Arid Land Geography, 2022, 45(1): 197-207.]
[16] 刘鹄, 赵文智, 何志斌, 等. 祁连山浅山区不同植被类型土壤水分时间异质性[J]. 生态学报, 2008, 28(5): 2390-2391.
[16] [Liu Hu, Zhao Wenzhi, He Zhibin, et al. Temporal heterogeneity of soil moisture under different vegetation types in Qilian Mountains[J]. Acta Ecologica Sinica, 2008, 28(5): 2390-2391.]
[17] 拓锋, 刘贤德, 刘润红, 等. 祁连山大野口流域青海云杉种群空间格局及其关联性[J]. 植物生态学报, 2020, 44(11): 1172-1183.
[17] [Tuo Feng, Liu Xiande, Liu Runhong, et al. Spatial distribution patterns and association of Picea crassifolia population in Dayekou Basin of Qilian Mountains northwestern China[J]. Chinese Journal of Plant Ecology, 2020, 44(11): 1172-1183.]
[18] 张凡兵, 龙婷, 金文斌, 等. 红松林天然更新对连续小梯度海拔变化的响应[J]. 东北林业大学学报, 2017, 45(5): 1-10.
[18] [Zhang Fanbing, Long Ting, Jin Wenbin, et al. Natural regeneration of primitive Korean pine forests in response to the variation in continuous small elevation gradient[J]. Journal of Northeast Forestry University, 2017, 45(5): 1-10.]
[19] 丁巧玲, 刘忠成, 王蕾, 等. 湖南桃源洞国家级自然保护区南方铁杉种群结构与生存分析[J]. 西北植物学报, 2016, 36(6): 1233-1244.
[19] [Ding Qiaoling, Liu Zhongcheng, Wang Lei, et al. Structure and survival analysis of Tsuga chinensis populations in Taoyuandong National Nature Reserve, Hunan Province[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(6): 1233-1244.]
[20] 曾德慧, 尤文忠, 范志平, 等. 樟子松人工固沙林天然更新障碍因子分析[J]. 应用生态学报, 2002, 13(3): 257-261.
[20] [Zeng Dehui, You Wenzhong, Fan Zhiping, et al. Analysis of natural regeneration barriers of Pinus sylvestris var. mongolica plantation on sandy land[J]. Chinese Journal of Applied Ecology, 2002, 13(3): 257-261.]
[21] 拓锋, 刘贤德, 黄冬柳, 等. 祁连山大野口流域青海云杉种群数量动态[J]. 生态学报, 2021, 41(17): 6871-6882.
[21] [Tuo feng, Liu Xiande, Huang Dongliu, et al. Quantitative dynamics of Picea crassifolia population in Dayekou Basin of Qilian Mountains[J]. Acta Ecologica Sinica, 2021, 41(17): 6871-6882.]
[22] 郭屹立, 王斌, 向悟生, 等. 喀斯特季节性雨林木本植物胸高断面积分布格局及其对地形因子的响应[J]. 生物多样性, 2016, 24(1): 30-39.
[22] [Guo Yili, Wang Bin, Xiang Wusheng, et al. Responses of spatial pattern of woody plants’ basal area to topographic factors in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China[J]. Biodiversity Science, 2016, 24(1): 30-39.]
[23] 刘何铭, 杨庆松, 方晓峰, 等. 亚热带常绿阔叶林林窗物种丰富度的影响因素[J]. 生物多样性, 2015, 23(2): 149-156.
[23] [Liu Heming, Yang Qingsong, Fang Xiaofeng, et al. Influences on gap species richness in a subtropical evergreen broadleaved forest[J]. Biodiversity Science, 2015, 23(2): 149-156.]
[24] Shen G, He F, Waagepetersen R, et al. Quantifying effects of habitat heterogeneity and other clustering processes on spatial distributions of tree species[J]. Ecology, 2013, 94(11): 2436-2443.
[25] 李艳丽, 杨华, 亢新刚, 等. 长白山云冷杉针阔混交林天然更新空间分布格局及其异质性[J]. 应用生态学报, 2014, 25(2): 311-317.
[25] [Li Yanli, Yang Hua, Kang Xingang, et al. Spatial heterogeneity of natural regeneration in a spruce-fir mixed broadleaf-conifer forest in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 311-317.]
[26] 黄甫昭, 王斌, 丁涛, 等. 弄岗北热带喀斯特季节性雨林群丛数量分类及与环境的关系[J]. 生物多样性, 2014, 22(2): 157-166.
[26] [Huang Fuzhao, Wang Bin, Ding Tao, et al. Numerical classification of associations in a northern tropical karst seasonal rain forest and the relationships of these associations with environmental factor[J]. Biodiversity Science, 2014, 22(2): 157-166.]
[27] 把黎, 尹宪志, 庞朝云, 等. 祁连山地区夏季南坡与北坡空中云水资源差异性分析[J]. 干旱区研究, 2022, 39(5): 1345-1359.
[27] [Ba Li, Yin Xianzhi, Pang Chaoyun, et al. Characteristics of the difference in air water resources between the north and south slopes of the Qilian Mountains in the summer[J]. Arid Zone Research, 2022, 39(5): 1345-1359.]
[28] 童翠芸, 王占林, 张得芳, 等. 土壤水分含量和光照强度对青海云杉光合特性的影响[J]. 内蒙古农业大学学报(自然科学版), 2020, 41(6): 22-26.
[28] [Tong Cuiyun, Wang Zhanlin, Zhang Defang, et al. Effects of soil moisture content and light intensity on the photosynthetic characteristics of Picea crassifolia[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2020, 41(6): 22-26.]
文章导航

/