四合木(Tetraena mongolica)的潜在适生区预测及其与自然保护区GAP分析
收稿日期: 2022-06-16
修回日期: 2022-08-18
网络出版日期: 2023-04-28
基金资助
内蒙古自治区重大专项(2021ZD0008);国家自然科学基金(32071582);内蒙古科技计划项目(2021GG0392)
Potential habitat prediction of Tetraena mongolica and its GAP analysis with nature reserves
Received date: 2022-06-16
Revised date: 2022-08-18
Online published: 2023-04-28
明晰物种的潜在分布区及其与当前自然保护区的空缺,对于合理高效地开展濒危物种保护具有重要的意义。为了预测四合木(Tetraena mongolica)在当代(2020s)及未来(2060s、2100s)的分布范围,以及自然保护区对四合木的保护现状,以四合木为对象,利用最大熵模型(The maximum entropy model software,MaxEnt)结合23个环境变量预测其在内蒙古自治区西鄂尔多斯与宁夏回族自治区的潜在适生区,并与当前四合木自然保护区进行了保护空缺分析。结果表明:(1)MaxEnt模型的受试者工作特征曲线下的面积为0.977,表明预测结果准确。(2)影响四合木分布的主要环境因子是最湿月降水量,其次是最干月降水量、距道路距离、等温性、最冷季平均温度、坡度。(3)研究区内四合木当前适生面积为4717 km2;2020s—2100s四合木潜在分布区退缩,并向西北部偏移。(4)基于保护空缺分析,当前仅有14.88%四合木的适宜生境位于保护区内,大面积的四合木适生区未设立自然保护区,这些地区主要集中在内蒙古乌海市和鄂尔多斯市杭锦旗。研究结果旨在为四合木保护及其自然保护区建设提供科学指导。
董子彦 , 马乐 , 高姝晗 , 韩鹏 , 张庆 , 包玉凤 . 四合木(Tetraena mongolica)的潜在适生区预测及其与自然保护区GAP分析[J]. 干旱区地理, 2023 , 46(4) : 595 -603 . DOI: 10.12118/j.issn.1000-6060.2022.292
For efficient conservation of endangered species, it is crucial to clarify the potential distribution of the species and the gap with current nature reserves. To predict the distribution of Tetraena mongolia in the present (the 2020s) and future (2060s, 2100s), and to explore the conservation gap with natural reserves,this study estimated the potential habitat of Tetraena mongolia in the western Ordos of Inner Mongolia and Ningxia, China using the MaxEnt model and conducted a gap analysis between the potential habitat and current Tetraena mongolia nature reserves based on 23 environmental factors. The area under the receiver operator characteristic (ROC) curve of the MaxEnt model was 0.977, indicating that the prediction was accurate. The crucial environmental factors affecting the distribution of Tetraena mongolia were precipitation of the wettest month, followed by precipitation of the driest month, distance from the road, isotherm properties, mean temperature of the coldest quarter, and slope. The current suitable area of Tetraena mongolia is 4717 km2; the potential distribution area decreased from the 2020s to the 2100s and shifted to the northwest. Presently, only 14.88% of the suitable habitats of Tetraena mongolia are located in protected areas. Large areas of suitable habitats for Tetraena mongolia have not been established as nature reserves, which are mainly concentrated in Wuhai City and Hangjinqi Banner of Ordos City. This study provides scientific guidance for the conservation of Tetraena mongolia and its natural reserve development.
[1] | Cowie R H, Bouchet P, Fontaine B. The sixth mass extinction: Fact, fiction or speculation?[J]. Biological Reviews of the Cambridge Philosophical Society, 2022, 97(2): 640-663. |
[2] | 田红, 李文金, 张玉珍. 高寒草甸对植物多样性短期丧失的响应[J]. 甘肃农业大学学报, 2015, 50(1): 93-98. |
[2] | [Tian Hong, Li Wenjin, Zhang Yuzhen. Response of alpine meadow to the short-term loss of plant diversity[J]. Journal of Gansu Agricultural University, 2015, 50(1): 93-98.] |
[3] | Eileen M, O’Brien. Climatic gradients in woody plant species richness: Towards an explanation based on an analysis of southern Africa’s woody flora[J]. Journal of Biogeography, 1993, 20(2): 181, doi: 10.2307/2845670. |
[4] | McGlone M S. When history matters: Scale, time, climate and tree diversity[J]. Global Ecology and Biogeography Letters, 1996, 5(6): 309-314. |
[5] | Su N, Jarvie S, Yan Y Z, et al. Landscape context determines soil fungal diversity in a fragmented habitat[J]. Catena, 2022, 213: 106163, doi: 10.1016/J.CATENA.2022.106163. |
[6] | 刘文胜, 游简舲, 曾文斌, 等. 气候变化下青藏苔草地理分布的预测[J]. 中国草地学报, 2018, 40(5): 43-49. |
[6] | [Liu Wensheng, You Jianling, Zeng Wenbin, et al. Prediction of the geographical distribution of Carex moorcroftii under global climate change based on MaxEnt model[J]. Chinese Journal of Grassland, 2018, 40(5): 43-49.] |
[7] | 秦媛媛, 鲁客, 杜忠毓, 等. 气候变化情景下孑遗植物绵刺在中国的潜在地理分布[J]. 生态学报, 2022, 42(11): 4473-4484. |
[7] | [Qin Yuanyuan, Lu Ke, Du Zhongyu, et al. Potential changes in the geographical distribution of the relict plant Potaninia mongolica Maxim in China under climate change scenarios[J]. Acta Ecologica Sinica, 2022, 42(11): 4473-4484.] |
[8] | 刘玉婷, 张齐飞, 刘景时, 等. 近20 a新疆南部植被覆盖度时空特征及对气候因素的响应——以塔什库尔干塔吉克自治县为例[J]. 干旱区地理, 2022, 45(5): 1481-1489. |
[8] | [Liu Yuting, Zhang Qifei, Liu Jingshi, et al. Temporal and spatial characteristics of vegetation coverage and its response to climatic factors in southern Xinjiang in recent 20 years: A case study of Tajik Autonomous County of Taxkorgan[J]. Arid Land Geography, 2022, 45(5): 1481-1489.] |
[9] | Robert P A, Enrique M M. Modeling species’ geographic distributions for preliminary conservation assessments: An implementation with the spiny pocket mice (Heteromys) of Ecuador[J]. Elsevier BV, 2004, 116(2): 167-179. |
[10] | Wiens J A, Stralberg D, Jongsomjit D, et al. Niches, models, and climate change: Assessing the assumptions and uncertainties[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(Suppl. 2): 19729-19736. |
[11] | 朱耿平, 刘国卿, 卜文俊, 等. 生态位模型的基本原理及其在生物多样性保护中的应用[J]. 生物多样性, 2013, 21(1): 90-98. |
[11] | [Zhu Gengping, Liu Guoqing, Bu Wenjun, et al. Ecological niche modeling and its applications in biodiversity conservation[J]. Chinese Biodiversity, 2013, 21(1): 90-98.] |
[12] | Cauwer V D, Muys B, Revermann R, et al. Potential, realised, future distribution and environmental suitability for Pterocarpus angolensis DC in southern Africa[J]. Elsevier BV: 2014, 315: 211-226. |
[13] | 吴诗宝, 马广智, 唐玫, 等. 中国穿山甲资源现状及保护对策[J]. 自然资源学报, 2002, 17(2): 174-180. |
[13] | [Wu Shibao, Ma Guangzhi, Tang Mei, et al. The status and conservation strategy of pangolin resource in China[J]. Journal of Natural Resources, 2002, 17(2): 174-180.] |
[14] | 王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4): 365-372. |
[14] | [Wang Yunsheng, Xie Bingyan, Wan Fanghao, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models[J] Chinese Biodiversity, 2007, 15(4): 365-372.] |
[15] | 王卫, 杨俊杰, 罗晓莹, 等. 基于Maxent模型的丹霞山国家级自然保护区极小种群植物丹霞梧桐的潜在生境评价[J]. 林业科学, 2019, 55(8): 19-27. |
[15] | [Wang Wei, Yang Junjie, Luo Xiaoying, et al. Assessment of potential habitat for Firmiana danxiaensis, a plant species with extremely small populations in Danxiashan National Nature Reserve based on MaxEnt model[J]. Scientia Silvae Sinicae, 2019, 55(8): 19-27.] |
[16] | Gao X X, Liu J, Huang Z H. The impact of climate change on the distribution of rare and endangered tree Firmiana kwangsiensis using the Maxent modeling[J]. Ecology and Evolution, 2022, 12(8): 9165, doi: 10.1002/ECE3.9165. |
[17] | 龚洵, 武全安, 张启泰. 自然保护区在保护生物多样性中的作用和意义[J]. 广西植物, 1993, 13(4): 359-366. |
[17] | [Gong Xun, Wu Quanan, Zhang Qitai. The function and significance of reservation in the conserving biological diversity[J]. Guihaia, 1993, 13(4): 359-366.] |
[18] | 万基中, 王春晶, 韩士杰, 等. 气候变化压力下建立东北红豆杉优先保护区的模拟规划[J]. 沈阳农业大学学报, 2014, 45(1): 28-32. |
[18] | [Wan Jizhong, Wang Chunjing, Han Shijie, et al. The planning of priority protection area for Taxus cuspidata under climate change[J]. Journal of Shenyang Agricultural University, 2014, 45(1): 28-32.] |
[19] | 黄会清, 钱荣. “植物大熊猫”紧急抢救中[J]. 浙江林业, 2006(1): 41. |
[19] | [Huang Huiqing, Qiang Rong. “Plant giant panda”emergency rescue[J]. Zhejiang Forestry, 2006(1): 41.] |
[20] | 李红颖, 刘果厚, 韩春荣, 等. 四合木(Tetraena mongolica)种子萌发出苗对水分和沙埋的响应[J]. 中国沙漠, 2017, 37(5): 910-916. |
[20] | [Li Hongying, Liu Guohou, Han Chunrong, et al. Response of seed germination and seedling emergence of Tetraena mongolica to soil water content and sand burial depth[J]. Journal of Desert Research, 2017, 37(5): 910-916.] |
[21] | 黄蕾. 珍稀濒危植物四合木Genic-SSR标记的开发及种群遗传学研究[D]. 呼和浩特: 内蒙古大学, 2021. |
[21] | [Huang Lei. Genic-SSR markers development and population genetic study of the rare and endangered plant Tetraena mongolica[D]. Hohhot: Inner Mongolia University, 2021.] |
[22] | 杜忠毓, 贺一鸣, 房朋朋, 等. 孑遗濒危植物四合木群落组成、物种多样性及土壤养分含量[J]. 生态学杂志, 2020, 39(11): 3537-3548. |
[22] | [Du Zhongyu, He Yiming, Fang Pengpeng, et al. Community composition, plant species diversity and soil nutrient content of endangered plant Tetraena mongolica Maxim[J] Chinese Journal of Ecology, 2020, 39(11): 3537-3548.] |
[23] | 智颖飙, 李红丽, 崔艳, 等. 孑遗植物四合木(Tetraena mongolica)迁地保护中的光合作用日变化特征与生理生态适应性[J]. 生态环境学报, 2015, 24(1): 14-21. |
[23] | [Zhi Yingbiao, Li Hongli, Cui Yan, et al. The studies on the photosynthetic characteristics of the endemic relict shrub Tetraena mongolica Maxim for the ex-situ conservation[J]. Ecology and Environmental Sciences, 2015, 24(1): 14-21.] |
[24] | 李中林, 秦卫华. 荒漠植物的摇篮——内蒙古西鄂尔多斯国家级自然保护区[J]. 生命世界, 2013(10): 48-55. |
[24] | [Li Zhonglin, Qin Weihua. A cradle for desert plants: West Ordos National Nature Reserve, Inner Mongolia[J]. Life World, 2013(10): 48-55.] |
[25] | 侯丽丽, 都瓦拉, 银山, 等. 基于牧户尺度的草原火灾风险评价——以东乌旗汗敖包嘎查为例[J]. 生态学报, 2022, 42(3): 1059-1070. |
[25] | [Hou Lili, Du Wala, Yin shan, et al. Grassland fire risk assessment based on herder scale: Taking Khan Obo village, eastern Wuzhumuqin Banner as an example[J]. Acta Ecologica Sinica, 2022, 42(3): 1059-1070.] |
[26] | 胡淑萍, 何礼文. 基于MaxEnt与ArcGIS对白水江国家级自然保护区缺苞箭竹适生区分析[J]. 生态学杂志, 2020, 39(6): 2115-2122. |
[26] | [Hu Shuping, He Liwen. Analysis of suitable distribution areas of Fargesia denudate in Baishuijiang National Nature Reserve using MaxEnt model and ArcGIS[J]. Chinese Journal of Ecology, 2020, 39(6): 2115-2122.] |
[27] | 张杰, 张旸, 赵振勇, 等. 中国飞蝗(Locusta migratoria)灾害地理分布模拟及其生物气候因子分析[J]. 干旱区地理, 2019, 42(3): 590-598. |
[27] | [Zhang Jie, Zhang Yang, Zhao Zhenyong, et al. Potential geographic distribution modeling and bioclimatic analysis of outbreak risk for the migratory Locusta migratoria in China[J]. Arid Land Geography, 2019, 42(3): 590-598.] |
[28] | 张晓玮, 蒋玉梅, 毕阳, 等. 基于MaxEnt模型的中国沙棘潜在适宜分布区分析[J]. 生态学报, 2022, 42(4): 1420-1428. |
[28] | [Zhang Xiaowei, Jiang Yumei, Bi Yang, et al. Identification of potential distribution area for Hippophae rhamnoides subsp. sinensis by the MaxEnt model[J]. Acta Ecologica Sinica, 2022, 42(4): 1420-1428.] |
[29] | 吴晓萌, 叶冬梅, 白玉娥, 等. 基于MaxEnt模型的中国白杄分布格局及未来变化[J]. 西北植物学报, 2022, 42(1): 162-172. |
[29] | [Wu Xiaomeng, Ye Dongmei, Bai Yu’e, et al. Distribution pattern and future change of Pica meyeri in China based on MaxEnt model[J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(1): 162-172.] |
[30] | Roach D A, Wulff R D. Maternal effects in plants[J]. Annual Review of Ecology and Systematics, 1987, 18: 209-235. |
[31] | Yu H Y, Liu X D, Ma Q H, et al. Nitrogen deposition drives response and recovery in the context of precipitation change and its reversal in an arid ecosystem[J]. Journal of Geophysical Research: Biogeosciences, 2022, 127(9): e2022JG006828, doi: 10.1029/2022JG006828. |
[32] | 赵泽芳, 卫海燕, 郭彦龙, 等. 人参潜在地理分布以及气候变化对其影响预测[J]. 应用生态学报, 2016, 27(11): 3607-3615. |
[32] | [Zhao Zefang, Wei Haiyan, Guo Yanlong, et al. Potential distribution of Panax ginseng and its predicted responses to climate change[J]. Chinese Journal of Applied Ecology, 2016, 27(11): 3607-3615.] |
[33] | 何远政, 黄文达, 赵昕, 等. 气候变化对植物多样性的影响研究综述[J]. 中国沙漠, 2021, 41(1): 59-66. |
[33] | [He Yuanzheng, Huang Wenda, Zhao Xin, et al. Review on the impact of climate change on plant diversity[J]. Journal of Desert Research, 2021, 41(1): 59-66.] |
[34] | 冉巧, 卫海燕, 赵泽芳, 等. 气候变化对孑遗植物银杉的潜在分布及生境破碎度的影响[J]. 生态学报, 2019, 39(7): 2481-2493. |
[34] | [Ran Qiao, Wei Haiyan, Zhao Zefang, et al. Impact of climate change on the potential distribution and habitat fragmentation of the relict plant Cathaya argyrophylla Chun et Kuang[J]. Acta Ecologica Sinica, 2019, 39(7): 2481-2493.] |
[35] | 吴建国. 未来气候变化对7种荒漠植物分布的潜在影响[J]. 干旱区地理, 2011, 34(1): 70-85. |
[35] | [Wu Jianguo. Effects of climate changes on distribution of seven desert plants in China[J]. Arid Land Geography, 2011, 34(1): 70-85.] |
[36] | 马松梅, 魏博, 李晓辰, 等. 气候变化对梭梭植物适宜分布的影响[J]. 生态学杂志, 2017, 36(5): 1243-1250. |
[36] | [Ma Songmei, Wei Bo, Li Xiaochen, et al. The impacts of climate change on the potential distribution of Haloxylon ammodendron[J]. Chinese Journal of Ecology, 2017, 36(5): 1243-1250.] |
[37] | 郑景云, 葛全胜, 郝志新. 气候增暖对我国近40年植物物候变化的影响[J]. 科学通报, 2002, 47(20): 1582-1587. |
[37] | [Zheng Jingyun, Ge Quansheng, Hao Zhixin. Effects of global warming on plant phenological changes for the last 40 years in China[J] Chinese Science Bulletin, 2002, 47(20): 1584-1587.] |
[38] | 吴建国, 吕佳佳, 周巧富. 气候变化对6种荒漠植物分布的潜在影响[J]. 植物学报, 2010, 45(6): 723-738. |
[38] | [Wu Jianguo, Lü Jiajia, Zhou Qiaofu. Potential effects of climate change on the distribution of six desert plants in China[J]. Chinese Bulletin of Botany, 2010, 45(6): 723-738.] |
[39] | 张英娟, 董文杰, 俞永强, 等. 中国西部地区未来气候变化趋势预测[J]. 气候与环境研究, 2004, 9(2): 342-349. |
[39] | [Zhang Yingjuan, Dong Wenjie, Yu Yongqiang, et al. A prediction of trend of the future climate change in the western China[J]. Climatic and Environmental Research, 2004, 9(2): 342-349.] |
[40] | 白帆, 桑卫国, 刘瑞刚, 等. 保护区对生物多样性的长期保护效果: 长白山自然保护区北坡森林植物多样性43年变化分析[J]. 中国科学(C辑: 生命科学), 2008, 38(6): 573-582. |
[40] | [Bai Fan, Sang Weiguo, Liu Ruigang, et al. Long-term conservation effects of protected areas on biodiversity: A 43-year change in forest plant diversity on the northern slope of Changbai Mountain Nature Reserve[J]. Scientia Sinica (Vitae), 2008, 38(6): 573-582.] |
[41] | 李岩, 刘秉儒, 张文文, 等. 贺兰山自然保护区四合木群落特征分析[J]. 宁夏农林科技, 2020, 61(7): 28-31. |
[41] | [Li Yan, Liu Bingru, Zhang Wenwen, et al. Community characteristics of Tetraena mongolica in Helan Mountain Nature Reserve[J]. Ningxia Journal of Agriculture and Forestry, 2020, 61(7): 28-31.] |
/
〈 |
|
〉 |