古尔班通古特沙漠及周边区域全新世环境演变研究进展
收稿日期: 2022-06-22
修回日期: 2022-07-19
网络出版日期: 2023-04-28
基金资助
国家重点研发计划项目(2018YFA0606400);国家自然科学基金(41977393)
Research progress of Holocene environmental evolution in the Gurbantunggut Desert and its surrounding areas
Received date: 2022-06-22
Revised date: 2022-07-19
Online published: 2023-04-28
古尔班通古特沙漠作为中国最大的固定、半固定沙漠,是中国境内受西风环流影响最为明显的沙漠之一,其全新世环境演变过程及其对全球气候变化的响应和反馈,对理解该区现代地表过程与未来环境演变趋势具有重要的科学意义。古尔班通古特沙漠及周边区域全新世环境演变研究的结果明显不同,存在中晚全新世和中全新世降水/湿度变化最优期的分歧,成因机制存在季风深入内陆和西风总体控制的争议。以目前区域已发表的多载体记录为基础,通过降维和集成分析重建了该区全新世气候/湿度变化背景,梳理区域风沙沉积地层年代学时空分布,集成了该区全新世风沙活动历史,进而探讨区域风沙活动与湿度变化的耦合关系。结果表明该区早中全新世(12~6 ka)气候干旱,风沙活动强烈;中晚全新世以来湿度逐渐增加、风沙活动逐渐减弱。通过区域及半球尺度的对比分析,发现该区环境演变过程主要受西风环流的控制。
徐宇杰 , 刘冰 , 孙爱军 , 汪克奇 , 李冬雪 , 赵晖 . 古尔班通古特沙漠及周边区域全新世环境演变研究进展[J]. 干旱区地理, 2023 , 46(4) : 550 -562 . DOI: 10.12118/j.issn.1000-6060.2022.306
The Gurbantunggut Desert (GGD), the largest fixed and semi-fixed desert in northwestern China, is the region most obviously affected by westerly circulation in China. Holocene environmental evolution and its response to global climate change have important scientific significance in understanding the modern surface process and future environmental evolution trends in the GGD. The previously studies on the Holocene environmental evolution of the GGD and its surrounding areas are controversial: some studies have concluded that optimal periods of precipitation/humidity happened in the Middle-Late Holocene, while others concluded that the optimal periods occurred in the Middle Holocene and that the genetic mechanism is in dispute between the monsoon intruding inland and the overall control by the westerly. This study reconstructs the Holocene climate/humidity variation using dimensionality reduction and integrated analysis based on the multiarchive records published in the study area, and synthesizes the Holocene aeolian sand activity history by sorting out the chronological distribution of the regional aeolian sedimentary stratigraphy. The coupling relationship between regional aeolian activity and humidity change is also examined. The results show that the early Middle Holocene (12-6 ka) in this area was arid, with considerable aeolian activity; the humidity gradually increased and the aeolian activity gradually weakened from the Middle to the Late Holocene. According to the comparative analysis on the regional and hemispheric scales, it is concluded that the environmental evolution process in the GGD is mainly controlled by the westerly circulation.
[1] | 陈发虎, 黄小忠, 杨美临, 等. 亚洲中部干旱区全新世气候变化的西风模式——以新疆博斯腾湖记录为例[J]. 第四纪研究, 2006, 26(6): 881-887. |
[1] | [Chen Fahu, Huang Xiaozhong, Yang Meilin, et al. Westerly dominated Holocene climate model in arid Central Asia: Case study on Bosten Lake, Xinjiang, China[J]. Quaternary Sciences, 2006, 26(6): 881-887.] |
[2] | Chen F H, Chen J H, Huang W, et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354. |
[3] | Chen F H, Yu Z C, Yang M L, et al. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3-4): 351-364. |
[4] | Chen J, Huang W, Jin L Y, et al. A climatological northern boundary index for the East Asian summer monsoon and its interannual variability[J]. Science China Earth Sciences, 2018, 61(1): 13-22. |
[5] | Feng S, Hu Q, Huang W, et al. Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations[J]. Global and Planetary Change, 2014, 112: 41-52. |
[6] | 陈惠中, 金炯, 董光荣. 全新世古尔班通古特沙漠演化和气候变化[J]. 中国沙漠, 2001, 21(4): 333-339. |
[6] | [Chen Huizhong, Jin Jiong, Dong Guangrong. Holocene evolution processes of Gurbantunggut Desert and climatic changes[J]. Journal of Desert Research, 2001, 21(4): 333-339.] |
[7] | Li S H, Fan A C. OSL chronology of sand deposits and climate change of last 18 ka in Gurbantunggut Desert, northwest China[J]. Journal of Quaternary Science, 2011, 26(8): 813-818. |
[8] | Long H, Shen J, Chen J H, et al. Holocene moisture variations over the arid Central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China[J]. Quaternary Science Reviews, 2017, 174: 13-32. |
[9] | 钟德才. 中国沙海动态演化[M]. 兰州: 甘肃文化出版社, 1998: 181-187. |
[9] | [Zhong Decai. Dynamic evolution of sand desert in China[M]. Lanzhou: Gansu Culture Publishing House, 1998: 181-187.] |
[10] | 钱亦兵, 吴兆宁. 古尔班通古特沙漠环境研究[M]. 北京: 科学出版社, 2010: 2-28. |
[10] | [Qian Yibing, Wu Zhaoning. Environmental study of the Gurbantunggut Desert[M]. Beijing: Science Press, 2010: 2-28.] |
[11] | 季方, 叶玮, 魏文寿. 古尔班通古特沙漠固定与半固定沙丘成因初探[J]. 干旱区地理, 2000, 23(1): 32-36. |
[11] | [Ji Fang, Ye Wei, Wei Wenshou. Preliminary study on the formation causes of the fixed and semi-fixed dunes in Gurbantonggut Desert[J]. Arid Land Geography, 2000, 23(1): 32-36.] |
[12] | 刘瑞, 李志忠, 靳建辉, 等. 古尔班通古特沙漠西南缘新月形沙丘内部沉积构造特征研究[J]. 干旱区地理, 2022, 45(3): 802-813. |
[12] | [Liu Rui, Li Zhizhong, Jin Jianhui, et al. Internal sedimentary structure of barchan dune in the southwest of Gurbantunggut Desert[J]. Arid Land Geography, 2022, 45(3): 802-813.] |
[13] | Qian Y B, Wu Z N, Zhao R F, et al. Vegetation patterns and species-environment relationships in the Gurbantunggut Desert of China[J]. Journal of Geographical Sciences, 2008, 18(4): 400-414. |
[14] | 刘铮瑶. 古尔班通古特沙漠沙丘地貌及其发育环境[D]. 西安: 陕西师范大学, 2020. |
[14] | [Liu Zhengyao. Dune landform and its development environment in Gurbantunggut Desert[D]. Xi’an: Shaanxi Normal University, 2020.] |
[15] | 温仰磊, 王友郡, 柳加波, 等. 准噶尔盆地南缘黄土磁化率变化规律及影响因素[J]. 地球环境学报, 2014, 5(2): 85-92. |
[15] | [Wen Yanglei, Wang Youjun, Liu Jiabo, et al. Variation and influencing factors of loess susceptibility in the southern margin of Junggar Basin[J]. Journal of Earth Environment, 2014, 5(2): 85-92.] |
[16] | Chen F H, Jia J, Chen J H, et al. A persistent Holocene wetting trend in arid Central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China[J]. Quaternary Science Reviews, 2016, 146: 134-146. |
[17] | Jia J, Chen J H, Wang Z Y, et al. No evidence for an anti-phased Holocene moisture regime in mountains and basins in Central Asian: Records from Ili loess, Xinjiang[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 572: 110407, doi: 10.1016/j.palaeo.2021.110407. |
[18] | Kang S G, Wang X L, Roberts H M, et al. Increasing effective moisture during the Holocene in the semiarid regions of the Yili Basin, Central Asia: Evidence from loess sections[J]. Quaternary Science Reviews, 2020, 246: 106553, doi: 10.1016/j.quascirev.2020.106553. |
[19] | Jiang Q F, Ji J F, Shen J, et al. Holocene vegetational and climatic variation in westerly-dominated areas of Central Asia inferred from the Sayram Lake in northern Xinjiang, China[J]. Science China Earth Sciences, 2013, 56(3): 339-353. |
[20] | 孙湘君, 杜乃秋, 翁成郁, 等. 新疆玛纳斯湖盆周围近14000年以来的古植被古环境[J]. 第四纪研究, 1994, 14(3): 239-248. |
[20] | [Sun Xiangjun, Du Naiqiu, Weng Chengyu, et al. Paleovegetation and paleoenvironment of Manasi Lake, Xinjiang, NW China during the last 14000 years[J]. Quaternary Sciences, 1994, 14(3): 239-248.] |
[21] | Herzschuh U, Tarasov P, Wünnemann B, et al. Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 211(1-2): 1-17. |
[22] | Zhang D L, Feng Z D. Holocene climate variations in the Altai Mountains and the surrounding areas: A synthesis of pollen records[J]. Earth-Science Reviews, 2018, 185: 847-869. |
[23] | Huang X Z, Peng W, Rudaya N, et al. Holocene vegetation and climate dynamics in the Altai Mountains and surrounding areas[J]. Geophysical Research Letters, 2018, 45(13): 6628-6636. |
[24] | Wang W, Zhang D L. Holocene vegetation evolution and climatic dynamics inferred from an ombrotrophic peat sequence in the southern Altai Mountains within China[J]. Global and Planetary Change, 2019, 179: 10-22. |
[25] | 蒋庆丰, 沈吉, 刘兴起, 等. 西风区全新世以来湖泊沉积记录的高分辨率古气候演化[J]. 科学通报, 2007, 52(9): 1042-1049. |
[25] | [Jiang Qingfeng, Shen Ji, Liu Xingqi, et al. A high resolution climatic change since Holocene inferred from multi proxy of lake sediment in westerly area of China[J]. Chinese Science Bulletin, 2007, 52(9): 1042-1049.] |
[26] | Feng Z D, Sun A Z, Abdusalih N, et al. Vegetation changes and associated climatic changes in the southern Altai Mountains within China during the Holocene[J]. The Holocene, 2016, 27(5): 683-693. |
[27] | Li J Y, Wang N L, Dodson J, et al. Holocene negative coupling of summer temperature and moisture availability over southeastern arid Central Asia[J]. Climate Dynamics, 2020, 55(5): 1187-1208. |
[28] | Zhang Y, Meyers P A, Liu X T, et al. Holocene climate changes in the Central Asia mountain region inferred from a peat sequence from the Altai Mountains, Xinjiang, northwestern China[J]. Quaternary Science Reviews, 2016, 152: 19-30. |
[29] | Hong B, Gasse F, Uchida M, et al. Increasing summer rainfall in arid eastern-Central Asia over the past 8500 years[J]. Scientific Reports, 2014, 4(1): 1-10. |
[30] | Liu X K, Liu J B, Shen C C, et al. Inconsistency between records of δ18O and trace element ratios from stalagmites: Evidence for increasing mid-late Holocene moisture in arid Central Asia[J]. The Holocene, 2019, 30(3): 369-379. |
[31] | Huang X Z, Chen F H, Fan Y X, et al. Dry late-glacial and early Holocene climate in arid Central Asia indicated by lithological and palynological evidence from Bosten Lake, China[J]. Quaternary International, 2009, 194(1-2): 19-27. |
[32] | An C B, Lu Y B, Zhao J J, et al. A high-resolution record of Holocene environmental and climatic changes from Lake Balikun (Xinjiang, China): Implications for Central Asia[J]. The Holocene, 2012, 22(1): 43-52. |
[33] | Wang W, Feng Z D, Ran M, et al. Holocene climate and vegetation changes inferred from pollen records of Lake Aibi, northern Xinjiang, China: A potential contribution to understanding of Holocene climate pattern in East-Central Asia[J]. Quaternary International, 2013, 311: 54-62. |
[34] | 黄强, 周兴佳. 晚更新世晚期以来古尔班通古特沙漠南部的气候环境演化[J]. 干旱区地理, 2000, 23(1): 55-60. |
[34] | [Huang Qiang, Zhou Xingjia. The climate-environment changes in the south of Gurbantunggut Desert since 80 ka BP[J]. Arid Land Geography, 2000, 23(1): 55-60.] |
[35] | 马妮娜. 全新世以来古尔班通古特沙漠南缘风沙活动研究[D]. 北京: 中国科学院大学, 2005. |
[35] | [Ma Ni’na. Study of aeolian activity in the southern margin of Gurbantunggut Desert since Holocene[D]. Beijing: University of Chinese Academy of Sciences, 2005.] |
[36] | 马妮娜, 穆桂金, 阎顺. 中全新世以来乌鲁木齐东道海子B剖面沉积物源探讨与分析[J]. 干旱区地理, 2005, 28(2): 188-193. |
[36] | [Ma Ni’na, Mu Guijin, Yan Shun. Grain-size analyses and detrital sediment discuss of the B profile of Dongdaohaizi in Urumqi since the middle Holocene[J]. Arid Land Geography, 2005, 28(2): 188-193.] |
[37] | 何冬. 乌鲁木齐东道海子沉积记录的中全新世以来气候变化研究[D]. 西安: 陕西师范大学, 2016. |
[37] | [He Dong. Study of climate change from sediments recorded of Dongdaohaizi in Urumqi since the middle Holocene[D]. Xi’an: Shaanxi Normal University, 2016.] |
[38] | 李志忠, 海鹰, 罗若愚, 等. 乌鲁木齐河下游地区湖泊沉积物的粒度特征与沉积环境[J]. 干旱区研究, 2000, 17(3): 1-5. |
[38] | [Li Zhizhong, Hai Ying, Luo Ruoyu, et al. Grain-size characteristics and sedimentary environment in the lacustrain deposit of downstream area in Wulumuqi River since 30 ka BP[J]. Arid Zone Research, 2000, 17(3): 1-5.] |
[39] | 李志忠, 海鹰, 周勇, 等. 乌鲁木齐河下游地区30 ka BP以来湖泊沉积的孢粉组合与古植被古气候[J]. 干旱区地理, 2001, 24(3): 201-205. |
[39] | [Li Zhizhong, Hai Ying, Zhou Yong, et al. Pollen component of lacustrain deposit and its palaeo-environment significance in the downstream region of Urumqi River since 30 ka BP[J]. Arid Land Geography, 2001, 24(3): 201-205.] |
[40] | 薛积彬, 钟巍. 干旱区湖泊沉积物粒度组分记录的区域沙尘活动历史: 以新疆巴里坤湖为例[J]. 沉积学报, 2008, 26(4): 647-654. |
[40] | [Xue Jibin, Zhong Wei. Variations in dust event reflected by grain-size component of lacustrine records in droughty area: A case study on Barkol Lake, Xinjiang, China[J]. Acta Sedimentologica Sinica, 2008, 26(4): 647-654.] |
[41] | Liu X Q, Herzschuh U, Shen J, et al. Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China[J]. Quaternary Research, 2017, 70(3): 412-425. |
[42] | Dyke A S. An outline of north American deglaciation with emphasis on central and northern Canada[J]. Developments in Quaternary Sciences, 2004, 2: 373-424. |
[43] | Praetorius S K, McManus J F, Oppo D W, et al. Episodic reductions in bottom-water currents since the last ice age[J]. Nature Geoscience, 2008, 1(7): 449-452. |
[44] | Jin L Y, Chen F H, Morrill C, et al. Causes of early Holocene desertification in arid Central Asia[J]. Climate Dynamics, 2012, 38(7-8): 1577-1591. |
[45] | Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285. |
[46] | Zhao J J, An C B, Huang Y S, et al. Contrasting early Holocene temperature variations between monsoonal East Asia and westerly dominated Central Asia[J]. Quaternary Science Reviews, 2017, 178: 14-23. |
/
〈 | 〉 |