区域发展

城镇发展的收缩状态识别、分类及因素探讨——以黄河流域甘肃段为例

  • 宁雷 ,
  • 连华 ,
  • 牛月 ,
  • 盛双庆 ,
  • 高泽宇
展开
  • 1.兰州交通大学建筑与城市规划学院,甘肃 兰州 730070
    2.南京大学建筑与城市规划学院,江苏 南京 210003
宁雷(1997-),男,硕士研究生,主要从事城市与区域规划等方面的研究. E-mail: ningleiplanning@163.com

收稿日期: 2022-07-18

  修回日期: 2022-08-18

  网络出版日期: 2023-03-31

基金资助

国家社科基金项目(07XJY023);甘肃省教育厅高等学校创新基金项目(2021A-047)

Identification, classification and factors of contraction of urban development: A case of Gansu section of the Yellow River Basin

  • Lei NING ,
  • Hua LIAN ,
  • Yue NIU ,
  • Shuangqing SHENG ,
  • Zeyu GAO
Expand
  • 1. College of Architecture and Urban Planning, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
    2. School of Architecture and Urban Planning, Nanjing University, Nanjing 210003, Jiangsu, China

Received date: 2022-07-18

  Revised date: 2022-08-18

  Online published: 2023-03-31

摘要

在推进“以县城为重要载体的城镇化建设,以县域为基本单元的城乡融合发展”的时代背景下,科学甄别县级单元城镇发展收缩状态、类型成为其城镇化发展分类施策的关键。通过构建“人口-土地-经济”耦合交互的城镇发展评价指标,借助象限图和耦合协调度模型,对县域、县城人类活动实体地域进行城镇发展状态识别和分类,并采用地理探测器进行因素探讨,最后以黄河流域甘肃段62个县级单元为例进行实证。结果表明:(1) 黄河流域甘肃段大多数县级单元发展态势良好,其中县域发生收缩的县级单元14个,县城发生收缩的共21个,大部分县城发生收缩与供给侧改革、去工业化相关。(2) 区域内绝对扩张型或绝对收缩型的县城数量均多于县域,各县城间城镇发展失衡,增减分化严重。(3) 社会经济发展水平、人民生活质量是影响黄河流域甘肃段县域城镇发展的重要因子,地方发展活力、开发建设力度是影响县城城镇发展的重要因子。(4) 县域与县城各主导因子的交互作用规律均表现为收缩型>扩张型,多个因子的共同作用有利于县域县城收缩发展态势的好转。研究提出了基于象限图的城镇收缩类型甄别方法,实证结果能够为黄河流域甘肃段各县级单元的规划建设引导提供依据支撑。

本文引用格式

宁雷 , 连华 , 牛月 , 盛双庆 , 高泽宇 . 城镇发展的收缩状态识别、分类及因素探讨——以黄河流域甘肃段为例[J]. 干旱区地理, 2023 , 46(3) : 492 -504 . DOI: 10.12118/j.issn.1000-6060.2022.359

Abstract

Under the background of promoting urbanization construction, with county towns serving as an important carrier, and integrated urban-rural development, with counties serving as the basic unit, scientifically identifying the contraction status and type of urban development of county-level units has become critical to its urbanization development classification policy. This study constructs urban development evaluation indicators with “population-land-economy” coupling interactions, identifies and classifies the urban development status of human activity entities in counties and county towns with the help of a quadrant map and coupling coordination model, and uses geographic detectors to discuss factors. Taking 62 county-level units in the Gansu section of the Yellow River Basin in China as examples for empirical verification, the results are as follows: (1) Most county-level units in the Gansu section of the Yellow River Basin have developed well, including 14 county-level units that have contracted in counties and 21 county-level units that have contracted in county towns, and most contractions are related to supply-side reform and deindustrialization. (2) The number of county towns of absolute expansion or absolute contraction in the region is more than that of counties; the urban development in each county town is unbalanced; the differentiation of increase and decrease is severe. (3) The level of social and economic development and the quality of life of people are important factors affecting the urban development of counties in the Gansu section of the Yellow River Basin, and the vitality of local development and the intensity of development and construction are important factors affecting the urban development of county towns. (4) The interaction law of the leading factors between the counties and county towns is manifested as contraction>expansion, and the combined effect of multiple factors is conducive to the improvement of the contraction development trend of the counties and county towns. A quadrant map based on the urban shrinkage type screening method is proposed, and the empirical results can provide a basis for the planning and construction guidance of county-level units in the Gansu section of the Yellow River Basin.

参考文献

[1] 赵德昭, 许家伟. 河南省县域就地城镇化时空演变与影响机理研究[J]. 地理研究, 2021, 40(7): 1978-1992.
[1] [ Zhao Dezhao, Xu Jiawei. Study on spatio-temporal evolution and influence mechanism of in situ urbanization at the county level in Henan Province[J]. Geographical Research, 2021, 40(7): 1978-1992. ]
[2] 任志安, 郭枫玥. 就业结构、产业结构与就地城镇化[J]. 城市学刊, 2017, 38(1): 1-11.
[2] [ Ren Zhi’an, Guo Fengyue. Employment structure, industrial structure and local urbanization[J]. Urban Studies, 2017, 38(1): 1-11. ]
[3] 石建勋, 邓嘉纬, 辛沛远. 以县城为重要载体推动新型城镇现代化建设的内涵、特点、价值意蕴及实施路径[J]. 新疆师范大学学报(哲学社会科学版), 2022, 43(5): 1-10.
[3] [ Shi Jianxun, Deng Jiawei, Xin Peiyuan. The connotation, characteristics, value implications and implementation paths of promoting the modernization of new cities and towns with counties as important carriers[J]. Journal of Xinjiang Normal University (Philosophy and Social Sciences Edition), 2022, 43(5): 1-10. ]
[4] 张凤林. 全面推进乡村振兴背景下县域经济高质量发展研究[J]. 理论探讨, 2022, 39(3): 167-172.
[4] [ Zhang Fenglin. Research on high-quality development of county economy under the background of comprehensively promoting rural revitalization[J]. Theoretical Discussions, 2022, 39(3): 167-172. ]
[5] 尹君锋, 石培基, 张韦萍, 等. 乡村振兴背景下县域农业农村创新发展评价及空间格局——以甘肃省为例[J]. 自然资源学报, 2022, 37(2): 291-306.
[5] [ Yin Junfeng, Shi Peiji, Zhang Weiping, et al. Evaluation and spatial pattern of county-level agricultural and rural innovation and development under the background of rural revitalization: A case study of Gansu Province[J]. Journal of Natural Resources, 2022, 37(2): 291-306. ]
[6] Albecker M F, Fol S. The restructuring of declining suburbs in the paris region[C]//Pallagst K, Wiechmann T, Fernandez C M. Shrinking cities. London: Routledge, 2014: 78-98.
[7] 徐博, 庞德良. 增长与衰退: 国际城市收缩问题研究及对中国的启示[J]. 经济学家, 2014, 34(4): 5-13.
[7] [ Xu Bo, Pang Deliang. Growth and decline: A study on the problem of international urban contraction and its implications for China[J]. Economist, 2014, 34(4): 5-13. ]
[8] 刘合林. 收缩城市量化计算方法进展[J]. 现代城市研究, 2016, 37(2): 17-22.
[8] [ Liu Helin. Progress in quantitative calculation methods for shrinking cities[J]. Modern Urban Studies, 2016, 37(2): 17-22. ]
[9] H?u?ermann H, Siebel W. Die schrumpfende stadt und die stadtsoziologie[J]. K?lner Zietschrift für Soziologie und Sozialpsychologie, 1988, 29: 78-94.
[10] Wiechmann T. Errors expected-aligning urban strategy with demographic uncertainty in shrinking cities[J]. International Planning Studies, 2008, 13(4): 431-446.
[11] 李郇, 杜志威, 李先锋. 珠江三角洲城镇收缩的空间分布与机制[J]. 现代城市研究, 2015, 36(9): 36-43.
[11] [ Li Xun, Du Zhiwei, Li Xianfeng. Spatial distribution and mechanism of urban contraction in the Pearl River Delta[J]. Modern Urban Studies, 2015, 36(9): 36-43. ]
[12] 龙瀛, 吴康, 王江浩. 中国收缩城市及其研究框架[J]. 现代城市研究, 2015, 36(9): 14-19.
[12] [ Long Ying, Wu Kang, Wang Jianghao. Shrinking cities in China and its research framework[J]. Modern Urban Studies, 2015, 36(9): 14-19. ]
[13] Lange D A. Polluted and dangerous: America’s worst abandoned properties and what can be done about them[J]. Journal of the American Planning Association, 2009, 75(4): 498-499.
[14] Pallagst K. The interdependence of shrinking and growing: Processes of urban transformation in the US in the rust belt and beyond[C]//Pallagst K, Wiechmann T, Martinez-Fernandez C. Shrinking cities:International perspectives and policy implications. London: Routledge, 2014: 59-93.
[15] 张京祥, 冯灿芳, 陈浩. 城市收缩的国际研究与中国本土化探索[J]. 国际城市规划, 2017, 32(5): 1-9.
[15] [ Zhang Jingxiang, Feng Canfang, Chen Hao. International research on urban contraction and exploration of Chinese localization[J]. International Urban Planning, 2017, 32(5): 1-9. ]
[16] 李智, 龙瀛. 基于动态街景图片识别的收缩城市街道空间品质变化分析: 以齐齐哈尔为例[J]. 城市建筑, 2018, 15(6): 21-25.
[16] [ Li Zhi, Long Ying. Analysis of spatial quality change of shrinking urban streets based on dynamic streetscape picture recognition: A case study of Qiqihar[J]. Urban Architecture, 2018, 15(6): 21-25. ]
[17] 吴康, 戚伟. 收缩型城市: 认知误区、统计甄别与测算反思[J]. 地理研究, 2021, 40(1): 213-229.
[17] [ Wu Kang, Qi Wei. Shrinking cities: Cognitive misunderstandings, statistical screening and measurement reflection[J]. Geographical Research, 2021, 40(1): 213-229. ]
[18] 陆荫, 张强, 李晓红, 等. 黄河流域甘肃段植被覆盖度时空变化及对气候因子的响应[J]. 水土保持通报, 2020, 40(2): 232-238.
[18] [ Lu Yin, Zhang Qiang, Li Xiaohong, et al. Temporal and spatial variation of vegetation cover in Gansu section of the Yellow River Basin and its response to climatic factors[J]. Bulletin of Soil and Water Conservation, 2020, 40(2): 232-238. ]
[19] 徐新良, 刘纪远, 张树文, 等. 中国多时期土地利用土地覆被遥感监测数据集(CNLUCC)[DB/OL]. [2022-03-30]. 中国科学院资源环境科学数据中心数据注册与出版系统.https://www.resdc.cn/DOI/DOI.aspx?DOIID=54.
[19] [Xu Xinliang, Liu Jiyuan, Zhang Shuwen, et al. Remote sensing monitoring dataset of land cover for land use in multiple periods of China (CNLUCC)[DB/OL]. [2022-03-30]. Data Registration and Publication System of Data Center of Resources and Environmental Sciences, Chinese Academy of Sciences. https://www.resdc.cn/DOI/DOI.aspx?DOIID=54. ]
[20] 范擎宇. 协调视角下长三角城市群空间结构演变及机理研究[D]. 南京: 南京师范大学, 2020.
[20] [ Fan Qingyu. Spatial structure evolution and mechanism of Yangtze River Delta urban agglomeration from the perspective of coordination[D]. Nanjing: Nanjing Normal University, 2020. ]
[21] 曹文莉, 张小林, 潘义勇, 等. 发达地区人口、土地与经济城镇化协调发展度研究[J]. 中国人口·资源与环境, 2012, 22(2): 141-146.
[21] [ Cao Wenli, Zhang Xiaolin, Pan Yiyong, et al. Research on the coordinated development degree of population, land and economic urbanization in developed areas[J]. Chinese, Resources and Environment, 2012, 22(2): 141-146. ]
[22] 贺三维, 邵玺. 京津冀地区人口-土地-经济城镇化空间集聚及耦合协调发展研究[J]. 经济地理, 2018, 38(1): 95-102.
[22] [ He Sanwei, Shao Xi. Research on spatial agglomeration and coupled coordinated development of population-land-economic urbanization in Beijing-Tianjin-Hebei Region[J]. Economic Geography, 2018, 38(1): 95-102. ]
[23] 麻学锋, 吕逸翔. 张家界城镇居民幸福水平对旅游城镇化集聚的响应识别及测度[J]. 自然资源学报, 2020, 35(7): 1647-1658.
[23] [ Ma Xuefeng, Lü Yixiang. Recognition and measurement of the response of urban residents’ happiness level to tourism urban agglomeration in Zhangjiajie[J]. Journal of Natural Resources, 2020, 35(7): 1647-1658. ]
[24] 孟祥凤, 马爽, 项雯怡, 等. 基于百度慧眼的中国收缩城市分类研究[J]. 地理学报, 2021, 76(10): 2477-2488.
[24] [ Meng Xiangfeng, Ma Shuang, Xiang Wenyi, et al. Classification of shrinking cities in China based on Baidu Insight[J]. Acta Geographical Sinica, 2021, 76(10): 2477-2488. ]
[25] 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
[25] [ Wang Jinfeng, Xu Chengdong. Geographical detectors: Principles and prospects[J]. Acta Geographical Sinica, 2017, 72(1): 116-134. ]
[26] 周恺, 钱芳芳. 收缩城市: 逆增长情景下的城市发展路径研究进展[J]. 现代城市研究, 2015, 36(9): 2-13.
[26] [ Zhou Kai, Qian Fangfang. Shrinking cities: Research progress on urban development pathways under the scenario of inverse growth[J]. Modern Urban Studies, 2015, 36(9): 2-13. ]
[27] 吴康, 龙瀛, 杨宇. 京津冀与长江三角洲的局部收缩: 格局、类型与影响因子识别[J]. 现代城市研究, 2015, 36(9): 26-35.
[27] [ Wu Kang, Long Ying, Yang Yu. Local contraction of Beijing-Tianjin-Hebei and Yangtze River Delta: Identification of pattern, type and impact factor[J]. Modern Urban Studies, 2015, 36(9): 26-35. ]
[28] 张瑞, 李朝奎, 姚思妤, 等. 融合地理探测器和地理加权回归的太原市建设用地变化因子研究[J]. 测绘通报, 2022, 68(5): 106-109, 119.
[28] [ Zhang Rui, Li Chaokui, Yao Siyu, et al. Study on the variation factor of construction land in Taiyuan City by integrating geographic detectors and geographical weighted regression[J]. Bulletin of Surveying and Mapping, 2022, 68(5): 106-109, 119. ]
[29] 杜传忠, 侯佳妮. “去工业化”对中国地区经济增长的影响——基于门槛效应的分析[J]. 现代财经, 2021, 41(9): 3-19.
[29] [ Du Chuanzhong, Hou Jiani. The impact of “deindustrialization” on China’s regional economic growth: An analysis based on threshold effect[J]. Modern Finance, 2021, 41(9): 3-19. ]
文章导航

/