气候与水文

近60 a山西省极端气温事件的年际变化及其对区域增暖的响应

  • 李娜 ,
  • 武永利 ,
  • 赵桂香 ,
  • 钱锦霞 ,
  • 李芬 ,
  • 赵海英 ,
  • 韩普
展开
  • 1.山西省气象台,山西 太原 030006
    2.山西省气象灾害防御技术中心,山西 太原 030032
李娜(1985-),女,硕士,高级工程师,主要从事气候变化及气象灾害研究. E-mail: nali85@163.com

收稿日期: 2022-06-15

  修回日期: 2022-07-24

  网络出版日期: 2023-03-31

基金资助

中国气象局创新发展专项(CXFZ2021J052);山西省重点研发计划(201903D321006);山西省重点研发计划(20110311040-1)

Interannual variations of extreme air temperature events and its response to regional warming in Shanxi Province in recent 60 years

  • Na LI ,
  • Yongli WU ,
  • Guixiang ZHAO ,
  • Jinxia QIAN ,
  • Fen LI ,
  • Haiying ZHAO ,
  • Pu HAN
Expand
  • 1. Shanxi Meteorological Observatory, Taiyuan 030006, Shanxi, China
    2. Meteorological Disaster Prevention Technology Center of Shanxi Province, Taiyuan 030032, Shanxi, China

Received date: 2022-06-15

  Revised date: 2022-07-24

  Online published: 2023-03-31

摘要

基于山西省境内70个气象站点的逐日最高气温、最低气温和平均气温资料,使用8个不同的极端气温指数分析其1960—2019年近60 a极端气温事件的变化特征,并分析其对气候变暖的响应。结果表明:(1) 夏季日数、热夜日数、日最低气温极大值、日最低气温极小值均呈显著增加趋势,冰冻日数、霜冻日数呈显著减少趋势。(2) 极端最高(低)气温的极大、极小值均上升,并且大部分地区极端气温的极小值增温幅度更大。(3) 山西省平均气温呈显著变暖趋势,平均每10 a增加0.26 ℃,空间上气温增幅呈从东南向西北逐渐增大的趋势。各极端气温指数对气候变暖具有较好的响应,其中霜冻日数对于山西省区域增暖的响应最显著,其次为日最低气温极大值。(4) 山西省半干旱区的日最低气温极小、极大值增温更快,冰冻日数减少速度快;半湿润区的热夜日数增加速度快,霜冻日数减少速度快。

本文引用格式

李娜 , 武永利 , 赵桂香 , 钱锦霞 , 李芬 , 赵海英 , 韩普 . 近60 a山西省极端气温事件的年际变化及其对区域增暖的响应[J]. 干旱区地理, 2023 , 46(3) : 337 -348 . DOI: 10.12118/j.issn.1000-6060.2022.289

Abstract

Extreme temperature is an important indicator of climate change. Under the background of global warming, disaster events (warm winter, drought, and heat wave) caused by extreme temperature changes are also becoming increasingly frequent, which pose a serious threat to the ecological system and agricultural production. Therefore, studying and predicting the occurrence of extreme temperature events are particularly important. On the basis of the daily maximum, minimum, and average temperature data of 70 meteorological stations, eight extreme temperature indices were analyzed to obtain spatial and temporal variations of extreme temperature events, and their response to regional warming was examined in Shanxi Province, China, from 1960 to 2019. The following results are presented. (1) The occurrence of summer days, tropical nights, annual maximum value of daily minimum temperature, and annual minimum value of daily minimum temperature showed a significant upward trend, whereas the occurrence of ice and frost days showed a significant downward trend. (2) The annual maximum or minimum value of daily maximum and minimum temperatures showed warming trends, and the change rates of annual minimum value of daily maximum and minimum temperatures were large in most regions. (3) The annual average temperature in the study area presented a statistically significant increasing trend at a rate of 0.26 ℃·(10a)-1. The spatial distribution of the warming rate increased from southeast to northwest. The changes in extreme temperature indices demonstrated remarkably significant responses to climate warming. The responses of frost days and annual maximum value of daily minimum temperature to regional warming were highly sensitive. (4) In semiarid regions of Shanxi Province, the rising rate of annual maximum and minimum values of daily minimum temperature was large and ice days had a rapid reduction. In the semihumid area of Shanxi Province, tropical nights demonstrated rapid increase, whereas frost days revealed a rapid reduction.

参考文献

[1] IPCC. Climate Change 2013: The physical science basis[M]. Cambridge: Cambridge University Press, 2013.
[2] IPCC. Special report on global warming of 1.5 ℃[M]. Cambridge: Cambridge University Press, 2018.
[3] IPCC. Climate change 2021: Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2021.
[4] 孙颖. 人类活动对气候系统的影响——解读IPCC第六次评估报告第一工作组报告第三章[J]. 大气科学学报, 2021, 44(5): 654-657.
[4] [ Sun Ying. Impact of human activities on climate system: An interpretation of Chapter Ⅲ of WGI report of IPCC AR6[J]. Chinese Journal of Atmospheric Sciences, 2021, 44(5): 654-657. ]
[5] Leonard M, Westra S, Phatak A, et al. A compound event framework for understanding extreme impacts[J]. Wiley Interdisciplinary Reviews: Climate Change, 2013, 5(1): 113-128.
[6] Hao Z C, Aghakouchak A, Phillips T J. Changes in concurrent monthly precipitation and temperature extremes[J]. Environmental Research Letters, 2013, 8(3): 1402-1416.
[7] 张调风, 杨昭明, 温婷婷, 等. 青藏高原东北部区域持续性低温事件的特征及影响因子分析[J]. 干旱区地理, 2021, 44(4): 897-905.
[7] [ Zhang Tiaofeng, Yang Zhaoming, Wen Tingting, et al. Characteristics and influencing factors of persistent low temperature events in northeast Qinghai-Tibet Plateau[J]. Arid Land Geography, 2021, 44(4): 897-905. ]
[8] 殷聪, 杨飞. “一带一路”区域极端气候事件变化及其对典型农业区生长季的影响[J]. 中国农业气象, 2021, 42(6): 463-474.
[8] [ Yin Cong, Yang Fei. Variation of extreme climate events in “One Belt and One Road” region and its impact on the growing season in typical agricultural regions[J]. Chinese Journal of Agrometeorology, 2021, 42(6): 463-474. ]
[9] 翟盘茂, 刘静. 气候变暖背景下的极端天气气候事件与防灾减灾[J]. 中国工程科学, 2012, 14(9): 55-63.
[9] [ Zhai Panmao, Liu Jing. Extreme weather/climate events and disaster prevention and mitigation under global warming background[J]. Engineering Sciences, 2012, 14(9): 55-63. ]
[10] Alexander L V, Zhang X, Peterson T C, et al. Global observed changes in daily climate extremes of temperature and precipitation[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D5): 1042-1063.
[11] Sheridan S C, Lee C C. Temporal trends in absolute and relative extreme temperature events across North America[J]. Journal of Geophysical Research Atmospheres, 2018, 123(21): 11889-11898.
[12] Kothawale D R, Revadekar J V, Kumar K R. Recent trends in pre-monsoon daily temperature extremes over India[J]. Journal of Earth System Science, 2010, 119(1): 51-65.
[13] Titkova T B, Cherenkova E A, Semenov V A. Regional features of changes in winter extreme temperatures and precipitation in Russia in 1970—2015[J]. Journal Ice and Snow, 2018, 58(4): 486-497.
[14] Peterson T C, Folland C, Gruza G, et al. Report on the activities of the working group on climate change detection and related rapporteurs 1998—2001[R]. Geneva: World Meteorological Organization, 2001.
[15] 周雅清, 任国玉. 中国大陆1956—2008年极端气温事件变化特征分析[J]. 气候与环境研究, 2010, 15(4): 405-417.
[15] [ Zhou Yaqing, Ren Guoyu. Variation characteristics of extreme temperature indices in mainland China during 1956—2008[J]. Climatic and Environmental Research, 2010, 15(4): 405-417. ]
[16] 黄小燕, 王小平, 王劲松, 等. 1960—2013年中国沿海极端气温事件变化特征[J]. 地理科学, 2016, 36(4): 612-620.
[16] [ Huang Xiaoyan, Wang Xiaoping, Wang Jinsong, et al. Variation of extreme temperature events in coastal region of China in 1960—2013[J]. Scientia Geographica Sinica, 2016, 36(4): 612-620. ]
[17] 高婧, 李胜楠, 井立红, 等. 新疆塔城地区极端气温变化特征及其影响因子分析[J]. 干旱区地理, 2021, 44(2): 346-359.
[17] [ Gao Jing, Li Shengnan, Jing Lihong, et al. Varialility characteristics of extreme temperature and its influencing factors in Tacheng Prefecture, Xinjiang[J]. Arid Land Geography, 2021, 44(2): 346-359. ]
[18] 靳铮, 游庆龙, 吴芳营, 等. 青藏高原三江源地区近60 a气候与极端气候变化特征分析[J]. 大气科学学报, 2020, 43(6): 1042-1055.
[18] [ Jin Zheng, You Qinglong, Wu Fangying, et al. Changes of climate and climate extremes in the three-rivers headwaters’ region over the Tibetan Plateau during the past 60 years[J]. Chinese Journal of Atmospheric Sciences, 2020, 43(6): 1042-1055. ]
[19] 陈锐杰, 刘峰贵, 陈琼, 等. 近60年青藏高原东北缘极端气温事件与气温日较差分析——以西宁地区为例[J]. 高原气象, 2018, 37(5): 1188-1198.
[19] [ Chen Ruijie, Liu Fenggui, Chen Qiong, et al. Variations of extreme air temperature events and diurnal temperature range in Xining, northeastern Qinghai-Tibetan Plateau from 1955 to 2015[J]. Plateau Meteorology, 2018, 37(5): 1188-1198. ]
[20] 张扬, 白红英, 苏凯, 等. 1960—2013年秦岭陕西段南北坡极端气温变化空间差异[J]. 地理学报, 2018, 73(7): 1296-1308.
[20] [ Zhang Yang, Bai Hongying, Su Kai, et al. Spatial variation of extreme temperature change on southern and northern slopes of Shaanxi section in Qinling Mountains during 1960—2013[J]. Acta Geographica Sinica, 2018, 73(7): 1296-1308. ]
[21] 王钊, 彭艳, 魏娜. 近52 a秦岭南北极端温度变化及其与区域增暖的关系[J]. 干旱气象, 2016, 34(2): 269-275.
[21] [ Wang Zhao, Peng Yan, Wei Na. Variation trends of the extreme temperature and its relationship with regional warming in the south and north sides of the Qinling Mountain during 1961—2012[J]. Journal of Arid Meteorology, 2016, 34(2): 269-275. ]
[22] 杜军, 路红亚, 建军. 1961—2010年西藏极端气温事件的时空变化[J]. 地理学报, 2013, 68(9): 1269-1280.
[22] [ Du Jun, Lu Hongya, Jian Jun. Variations of extreme air temperature events over Tibet from 1961 to 2010[J]. Acta Geographica Sinica, 2013, 68(9): 1269-1280. ]
[23] 冯晓莉, 多杰卓么, 李万志, 等. 1961—2018年青海高原极端气温指数时空变化特征[J]. 干旱气象, 2021, 39(1): 28-37.
[23] [ Feng Xiaoli, Duo Jiezhuome, Li Wanzhi, et al. Spatiotemporal variations of extreme temperature indices over Qinghai Plateau during 1961—2018[J]. Journal of Arid Meteorology, 2021, 39(1): 28-37. ]
[24] 申红艳, 马明亮, 王冀, 等. 青海省极端气温事件的气候变化特征研究[J]. 冰川冻土, 2012, 34(6): 1371-1378.
[24] [ Shen Hongyan, Ma Mingliang, Wang Ji, et al. Variation characteristics of extreme air temperature events in Qinghai Province[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1371-1378. ]
[25] 张先平, 张彦军, 王孟本. 山西高原植被景观空间特征分析[J]. 西北林学院学报, 2013, 28(1): 214-220.
[25] [ Zhang Xianping, Zhang Yanjun, Wang Mengben. Spatial characters of vegetation landscape in Shanxi Plateau[J]. Journal of Northwest Forestry University, 2013, 28(1): 214-220. ]
[26] 上官铁梁. 山西植被的水平地带性分析[J]. 山西大学学报(自然科学版), 1989, 12(1): 104-111.
[26] [ Shangguan Tieliang. Analysis of the horizontal zonality of the vegetation in Shanxi Province[J]. Journal of Shanxi University (Natural Science Edition), 1989, 12(1): 104-111. ]
[27] 秦浩, 董刚, 张峰. 山西植物功能型划分及其空间格局[J]. 生态学报, 2015, 35(2): 396-408.
[27] [ Qin Hao, Dong Gang, Zhang Feng. Classification of plant functional types and spatial pattern in Shanxi Province[J]. Acta Ecologica Sinica, 2015, 35(2): 396-408. ]
[28] 姬霖, 段克勤. 1960—2017年渭河流域极端气温变化及其对区域增暖的响应[J]. 地理科学, 2020, 40(3): 466-477.
[28] [ Ji Lin, Duan Keqin. Variations of extreme temperature and its response on regional warming in the Weihe River Basin during 1960—2017[J]. Scientia Geographica Sinica, 2020, 40(3): 466-477. ]
[29] 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 2007.
[29] [ Wei Fengying. Modern climatic statistical diagnosis and forecasting technology[M]. Beijing: Meteorological Press, 2007. ]
[30] 王岱, 游庆龙, 江志红, 等. 基于均一化资料的中国极端地面气温变化分析[J]. 高原气象, 2016, 35(5): 1352-1363.
[30] [ Wang Dai, You Qinglong, Jiang Zhihong, et al. Analysis of extreme temperature changes in China based on the homogeneity-adjusted data[J]. Plateau Meteorology, 2016, 35(5): 1352-1363. ]
[31] 杨维涛, 孙建国, 康永泰, 等. 黄土高原地区极端气候指数时空变化[J]. 干旱区地理, 2020, 43(6): 1456-1466.
[31] [ Yang Weitao, Sun Jianguo, Kang Yongtai, et al. Temporal and spatial changes of extreme weather indices in the Loess Plateau[J]. Arid Land Geography, 2020, 43(6): 1456-1466. ]
[32] Wu L Y, Zhang J Y, Dong W J. Vegetation effects on mean daily maximum and minimum surface air temperatures over China[J]. Chinese Science Bulletin, 2011, 56(9): 900-905.
文章导航

/