气候与环境变化

沙尘天气下黑河流域大气长波辐射遥感估算

  • 王子超 ,
  • 王春磊 ,
  • 马俊俊
展开
  • 1.华北理工大学人工智能学院,河北 唐山 063210
    2.自然资源部咨询研究中心,北京 100100
王子超(1998-),男,硕士研究生,主要从事热红外遥感等方面研究. E-mail: 1171714338@qq.com

收稿日期: 2022-06-07

  修回日期: 2022-09-14

  网络出版日期: 2023-03-14

基金资助

国家自然科学基金项目(41801264);河北自然科学基金项目(D202009074)

Estimation of downward surface longwave radiation in Heihe River Basin with remotely sensed data

  • Zichao WANG ,
  • Chunlei WANG ,
  • Junjun MA
Expand
  • 1. School of Artificial Intelligence, North China University of Science and Technology, Tangshan 063210, Hebei, China
    2. Consulting & Research Center of Ministry of Natural Resources, Beijing 100100, China

Received date: 2022-06-07

  Revised date: 2022-09-14

  Online published: 2023-03-14

摘要

由于沙尘气溶胶散射和吸收机制的复杂性,目前还没有成熟的可应用于沙尘天气的大气长波辐射反演算法。通过对比分析常见的沙尘、城市、乡村、海洋气溶胶对大气长波辐射强迫和MODIS通道辐亮度影响的基础上,提出利用气溶胶光学参数对线性模型进行修正,构建了适用于沙尘气溶胶条件下的大气长波辐射估算模型,并利用黑河流域4个观测站点(花寨子荒漠站、混合林站、黑河遥感站和张掖湿地站)实测数据对模型的应用能力进行检验。结果表明:4个站点遥感反演的大气长波辐射均方误差为17.1~20.4 W·m-2,偏差为-12.3~-1.8 W·m-2。由于考虑了沙尘气溶胶的光学厚度变化和辐射强迫效应,修正后的模型可显著提高沙尘气溶胶影响下大气下行辐射的反演精度,减少长波辐射应用中的不确定性,对干旱区地表能量收支研究提供了重要参考。

本文引用格式

王子超 , 王春磊 , 马俊俊 . 沙尘天气下黑河流域大气长波辐射遥感估算[J]. 干旱区地理, 2023 , 46(2) : 243 -252 . DOI: 10.12118/j.issn.1000-6060.2022.270

Abstract

Downward surface longwave radiation (DSLR) is indispensable for research about surface radiation balance. DSLR is one of the components of the surface radiation budget. Most of the DSLR inversion methods with remotely sensed data are on the conditions of clear sky. This method has a limited application range and their performances can be severely degraded in complex weather conditions as the effects of different aerosol types and levels are rarely considered. However, the arid and semi-arid area in northwest China is a frequent area of sandstorms, especially in spring each year, millions of tons of dust can enter the atmosphere, which not only causes significant damage to human life and production activities but also affects climate and the environment due to the physical and chemical effects of dust aerosol. It is difficult to study the optical properties of dust aerosols at home and abroad. Due to the complex mechanism of aerosol scattering and absorption, there is no mature DSLR algorithm that can be applied to dust sky, and this research is a tentative exploration in this field. For this issue, DSLR and top of the atmosphere (TOA) channel radiances under seven main land cover types are simulated to establish a simulation database. Secondly, the model coefficients are grouped by view zenith angle (VZA), water vapor content (WVC), and aerosol optical depth (AOD) to form a coefficient lookup table. Finally, based on the analysis of the effects of various four aerosol types and levels on atmospheric longwave radiative forcing and MODIS channel radiances, an improvement of the linear model using aerosol optical parameters is proposed to establish a DSLR estimation model constructed to apply to dust aerosol conditions, and four sites in Heihe River Basin, Gansu Province, China were used to verify the application ability of the improved model. Overall, the root mean square error of DSLR between the retrieved value and the site value is from 17.1 W·m-2 to 20.4 W·m-2, and the bias is from -12.3 W·m-2 to -1.8 W·m-2 for the four stations. Due to considering the dust aerosol optical depth and radiative forcing of dust aerosol, the improved model is able to significantly increase the estimating accuracy of DSLR under dust aerosol conditions and can reduce the uncertainty of DSLR in the applications of radiation. From the results, the inversion accuracy of this model can meet the requirements of instantaneous DSLR research and serve as a reference for subsequent research. However, more case studies and comprehensive analysis are needed before the model is used to estimate DSLR in dust sky actually.

参考文献

[1] Alexandri G, Georgoulias A K, Zanis P, et al. On the ability of RegCM4 regional climate model to simulate surface solar radiation patterns over Europe: An assessment using satellite-based observations[J]. Atmospheric Chemistry and Physics, 2015, 15(22): 13195-13216.
[2] Mateos D, Anton M, Toledano C, et al. Aerosol radiative effects in the ultraviolet, visible, and near-infrared spectral ranges using long-term aerosol data series over the Iberian Peninsula[J]. Atmospheric Chemistry and Physics, 2014, 14(24): 13497-13514.
[3] Guo Y M, Cheng J, Liang S L. Comprehensive assessment of parameterization methods for estimating clear-sky surface downward longwave radiation[J]. Theoretical and Applied Climatology, 2019, 135(3): 1045-1058.
[4] Iziomon M G, Mayer H, Matzarakis A. Downward atmospheric longwave irradiance under clear and cloudy skies: Measurement and parameterization[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65(10): 1107-1116.
[5] Brutsaert W. On a derivable formula for long-wave radiation from clear skies[J]. Water Resources Research, 1975, 11(5): 742-744.
[6] 闵敏, 吴晓. 从FY-4A卫星遥感数据和GFS资料估算全天空状况下的地表长波辐射通量[J]. 气象, 2020, 46(3): 336-345.
[6] [Min Min, Wu Xiao. Estimating surface longwave radiation flux under all-sky condition from FY-4A and GFS data[J]. Meteorological Monthly, 2020, 46(3): 336-345.]
[7] 李建江, 李佳, 吴立新, 等. 基于高亚洲精细再分析数据模拟普若岗日冰原2012—2014年表面能量-物质平衡[J]. 干旱区研究, 2021, 38(4): 919-929.
[7] [Li Jianjiang, Li Jia, Wu Lixin, et al. Simulating surface energy and mass balance of the Puruogangri ice cap during 2012—2014 based on High Asia Refined analysis data[J]. Arid Zone Research, 2021, 38(4): 919-929.]
[8] Bisht G, Venturini V, Islam S, et al. Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days[J]. Remote Sensing of Environment, 2005, 97(1): 52-67.
[9] Tang B H, Li Z L. Estimation of instantaneous net surface longwave radiation from MODIS cloudfree data[J]. Remote Sensing of Environment, 2008, 112(9): 3482-3492.
[10] Wang W H, Liang S L. Estimation of high-spatial resolution clear-sky longwave downward and net radiation over land surfaces from MODIS data[J]. Remote Sensing of Environment, 2009, 113(4): 745-754.
[11] Ridley D A, Heald C L, Kok J F, et al. An observationally constrained estimate of global dust aerosol optical depth[J]. Atmospheric Chemistry and Physics, 2016, 16(23): 15097-15117.
[12] 茹建波, 王天河, 李积明, 等. 东亚沙尘源区晴空和云上沙尘气溶胶特征[J]. 中国沙漠, 2018, 38(2): 372-383.
[12] [Ru Jianbo, Wang Tianhe, Li Jiming, et al. Characteristics of dust aerosol in both clear-sky and above-cloud conditions over East Asia[J]. Journal of Desert Research, 2018, 38(2): 372-383.]
[13] 谢艳清, 李正强, 侯伟真. FY-4A AGRI陆地气溶胶光学厚度反演[J]. 遥感学报, 2022, 26(5): 913-922.
[13] [Xie Yanqing, Li Zhengqiang, Hou Weizhen. Aerosol optical depth retrieval over land using data from AGRI onboard FY-4A[J]. Journal of Remote Sensing, 2022, 26(5): 913-922.]
[14] 贾臣, 孙林, 陈允芳, 等. 深度置信网络算法反演Landsat 8 OLI气溶胶光学厚度[J]. 遥感学报, 2020, 24(10): 1180-1192.
[14] [Jia Chen, Sun Lin, Chen Yunfang, et al. Inversion of aerosol optical depth for Landsat 8 OLI data using deep belief network[J]. Journal of Remote Sensing, 2020, 24(10): 1180-1192.]
[15] 王联霞, 张衡, 徐青. VIIRS高分辨率地表反射率关系库支持下的气溶胶光学厚度反演[J]. 测绘科学技术学报, 2021, 38(3): 295-300.
[15] [Wang Lianxia, Zhang Heng, Xu Qing. VIIRS aerosol optical depth retrieval based on high resolution surface reflectance ratio database[J]. Journal of Geomatics Science and Technology, 2021, 38(3): 295-300.]
[16] 李丁, 秦凯, 薛勇, 等. 基于S5P/TROPOMI的中国东部气溶胶单次散射反照率反演初探[J]. 遥感学报, 2022, 26(5): 897-912.
[16] [Li Ding, Qin Kai, Xue Yong, et al. Preliminary retrieval of aerosol single scattering albedo in eastern China based on S5P/TROPOMI[J]. Journal of Remote Sensing, 2022, 26(5): 897-912.]
[17] Xin J, Gong C, Wang S, et al. Aerosol direct radiative forcing in desert and semi-desert regions of northwestern China[J]. Atmospheric Research, 2016, 171: 56-65.
[18] 田磊, 张武, 常倬林, 等. 河西走廊干旱区春季沙尘气溶胶对辐射的影响初步研究[J]. 干旱区地理, 2018, 41(5): 923-929.
[18] [Tian Lei, Zhang Wu, Chang Zhuolin, et al. Influence of spring dust aerosol on radiation over the arid area in Hexi Corridor[J]. Arid Land Geography, 2018, 41(5): 923-929.]
[19] Sicard M, Bertolín S, Mallet M, et al. Estimation of mineral dust long-wave radiative forcing: Sensitivity study to particle properties and application to real cases in the region of Barcelona[J]. Atmospheric Chemistry and Physics, 2014, 14(17): 9213-9231.
[20] Song L, Bian Z, Kustas W P, et al. Estimation of surface heat fluxes using multi-angular observations of radiative surface temperature[J]. Remote Sensing of Environment, 2020, 239: 111674, doi: 10.1016/j.rse.2020.111674.
[21] Che T, Li X, Liu S, et al. Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China[J]. Earth System Science Data, 2019, 11(3): 1483-1499.
[22] Hess M, Koepke P, Schult I. Optical properties of aerosols and clouds: The software package OPAC[J]. Bulletin of the American Meteorological Society, 1998, 79(5): 831-844.
[23] 孙晓雷, 甘伟, 林燕, 等. MODIS 3 km气溶胶光学厚度产品检验及其环境空气质量指示[J]. 环境科学学报, 2015, 35(6): 1657-1666.
[23] [Sun Xiaolei, Gan Wei, Lin Yan, et al. Validation of MODIS 3 km aerosol optical depth product and its air quality indication[J]. Acta Scientiae Circumstantiae, 2015, 35(6): 1657-1666.]
[24] Liu S M, Li X, Xu Z W, et al. The Heihe integrated observatory network: A basin-scale and surface processes observatory in China[J]. Vadose Zone Journal, 2018, 17(1): 1-21.
[25] Remer L A, Kaufman Y J, Tanré D, et al. The MODIS aerosol algorithm, products, and validation[J]. Journal of the Atmospheric Sciences, 2005, 62(4): 947-973.
[26] Sobrino J A, El Kharraz J, Li Z L. Surface temperature and water vapour retrieval from MODIS data[J]. International Journal of Remote Sensing, 2003, 24(24): 5161-5182.
[27] Jiao Z H, Mu X H. Global validation of clear-sky models for retrieving land-surface downward long-wave radiation from MODIS data[J]. Remote Sensing of Environment, 2022, 271: 112903, doi: 10.1016/j.rse.2022.112903.
[28] 韩超信, 汤耀国, 韩永翔, 等. 中国北方地区尘卷风时空分布的数值模拟[J]. 干旱区地理, 2021, 44(4): 1003-1010.
[28] [Han Chaoxin, Tang Yaoguo, Han Yongxiang, et al. Simulation of spatial-temporal distribution of dust devil in northern China[J]. Arid Land Geography, 2021, 44(4): 1003-1010.]
文章导航

/