生物与土壤

水热条件共同驱动新疆湿地植物丰富度空间分布格局

  • 韩大勇 ,
  • 牛忠泽 ,
  • 伍永明 ,
  • 高健
展开
  • 1.伊犁师范大学生物与地理科学学院,新疆 伊宁 835000
    2.中国科学院新疆生态与地理研究所沙漠工程勘察设计所,新疆 乌鲁木齐 830011
    3.新疆维吾尔自治区林业和草原局,新疆 乌鲁木齐 830099
韩大勇(1978-),男,博士,教授,主要从事干旱区植物多样性和湿地植被恢复等方面研究. E-mail: 17986754@ylnu.edu.cn

收稿日期: 2022-06-03

  修回日期: 2022-08-20

  网络出版日期: 2023-02-21

基金资助

新疆维吾尔自治区自然科学基金项目(2019D01C332);伊犁师范大学引进博士科研启动基金(2018005)

Spatial distribution pattern of wetland plant species richness driven by water and heat conditions collectively in Xinjiang

  • Dayong HAN ,
  • Zhongze NIU ,
  • Yongming WU ,
  • Jian GAO
Expand
  • 1. College of Biological and Geographical Sciences, Yili Normal University, Yining 835000, Xinjiang, China
    2. Desert Engineering Survey and Design Institute, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    3. Forestry and Grassland Bureau of Xinjiang Uygur Autonomous Region, Urumqi 830099, Xinjiang, China

Received date: 2022-06-03

  Revised date: 2022-08-20

  Online published: 2023-02-21

摘要

在地理空间尺度上,气候因素(如热量、降水量等)一直被认为是物种多样性的主要驱动因素。然而,气候因素能否解释湿地植物多样性格局仍不清楚。研究探讨了环境因素尤其水分和热量条件对湿地物种分布的影响,具体包括经度、纬度、海拔、年平均降水量、年平均气温、年平均蒸发量和年平均日照时数总计7个指标,研究对象涉及新疆3个二级流域的26处湿地公园,应用结构方程模型分析了各指标对湿地植物丰富度影响的相对大小及其相互作用关系。另外,还利用莫兰指数(Moran’s I)对各变量残差进行了空间相关性分析,以评估空间相关性的影响。结果表明:(1) 结构方程模型总计解释了41.8%的物种丰富度变异,以年平均降水量对物种丰富度总效应最高,为0.47,其次是年平均日照时数,为-0.42,其中年平均降水量为正效应,年平均日照时数为负效应。其他各指标对物种丰富度的效应均不显著。(2) 年平均降水量对植物丰富度的影响主要表现为直接效应,占总效应的92.86%,年平均日照时数对植物丰富度的影响主要是间接效应,占总效应的54.76%。(3) 空间相关性分析表明年平均降水量和年平均日照时数的残差均不存在空间相关性,莫兰指数在-0.15~0.10范围内波动,可以认为是可靠的预测指标。综上,新疆湿地植物丰富度主要受水热条件的共同驱动,且热量的作用依赖于水分条件,在未来湿地植物多样性保护工作中,应加强气候变化对植物多样性影响的评估和应对措施。

本文引用格式

韩大勇 , 牛忠泽 , 伍永明 , 高健 . 水热条件共同驱动新疆湿地植物丰富度空间分布格局[J]. 干旱区地理, 2023 , 46(1) : 86 -93 . DOI: 10.12118/j.issn.1000-6060.2022.265

Abstract

On the geographic spatial scale, climate factors (such as environmental energy and precipitation) are the main driving factors of plant species diversity. However, it remains unclear whether climatic factors can explain the plant diversity in wetlands. This study discusses the influence of environmental factors, especially the effect of water and heat conditions on the distribution of wetland species. Specifically, it includes four categories and seven indicators, including spatial factors (longitude and latitude), terrain factors (altitude), water factors (annual average precipitation and evaporation), and heat factors (annual average air temperature and sunshine hours). The research objects involve 26 wetland parks in three secondary river basins in Xinjiang, China. The structural equation model is used to explore the relative importance of each indicator on wetland plant richness and their interaction. In addition, Moran’s I index is used to analyze the spatial correlation of the residuals of each variable to evaluate the impact of spatial correlation. The results show that (1) the structural equation model explains 41.8% of the variation in plant species richness. The total effect of annual average precipitation on species richness is the highest, which is 0.47, followed by the annual average sunshine hours, which is -0.42. Among them, the annual average precipitation has a positive effect, whereas the annual average sunshine hours have a negative effect. The effects of other indices on species richness are insignificant. (2) The influence of annual average precipitation on plant richness is primarily a direct effect, which is 0.39, accounting for 92.86% of the total effect. The influence of annual average sunshine hours on plant richness is primarily an indirect effect, which is -0.23, accounting for 54.76% of the total effect. (3) Spatial correlation analysis shows that there is no spatial correlation between the residuals of annual average precipitation and sunshine hours on different spatial scales, and the Moran’s I index fluctuates within the range of -0.15 to 0.10, which could be considered reliable prediction indices. (4) The direct effects of spatial factors such as longitude and latitude on plant richness are insignificant, whereas the indirect effects are significant. Longitude significantly affects the annual average precipitation, and latitude significantly affects the annual average sunshine hours and temperature, indicating that spatial factors indirectly affect the species richness by affecting the annual average precipitation and sunshine hours. In conclusion, the plant richness of the wetlands in Xinjiang is primarily driven by water and heat conditions. The role of heat depends on the water conditions. In future wetland plant diversity protection studies, the assessment and response measures of the impact of climate change on plant diversity should be strengthened.

参考文献

[1] Hawkins B A, Field R, Cornell H V, et al. Energy, water, and broad-scale geographic patterns of species richness[J]. Ecology, 2003, 84(12): 3105-3017.
[2] Li L P, Wang Z H, Zerbe S, et al. Species richness patterns and water-energy dynamics in the drylands of northwest China[J]. PLoS One, 2013, 8(6): e66450, doi: 10.1371/journal.pone.0066450.
[3] 王健铭, 钟悦鸣, 张天汉, 等. 中国黑戈壁地区植物物种丰富度格局的水热解释[J]. 植物科学学报, 2016, 34(4): 530-538.
[3] [Wang Jianming, Zhong Yueming, Zhang Tianhan, et al. Plant species richness patterns and water-energy dynamics in the black gobi desert, China[J]. Plant Science Journal, 2016, 34(4): 530-538.]
[4] 刘洋, 张一平, 何大明, 等. 纵向岭谷区山地植物物种丰富度垂直分布格局及气候解释[J]. 科学通报, 2007, 52(增刊2): 43-50.
[4] [Liu Yang, Zhang Yiping, He Daming, et al. Vertical distribution pattern and climate interpretation of plant species richness in mountainous areas in longitudinal range-gorge region[J]. Chinese Science Bulletin, 2007, 52(Suppl. 2): 43-50.]
[5] Panda R M, Behera M D, Roy P S, et al. Energy determines broad pattern of plant distribution in western Himalaya[J]. Ecology and Evolution, 2017, 7(24): 10850-10860.
[6] Panda R M, Behera M D, Roy P S, et al. On the relationships between plant species richness and the environment: A case study in eastern Ghats, India[J]. Environmental Monitoring and Assessment, 2020, 191: 784, doi: 10.1007/s10661-019-7686-7.
[7] Chen S B, Jiang G M, Ouyang Z Y, et al. Relative importance of water, energy, and heterogeneity in determining regional pteridophyte and seed plant richness in China[J]. Journal of Systematics and Evolution, 2011, 49(2): 95-107.
[8] Cong J, Su X J, Liu X, et al. Changes and drivers of plant community in the natural broadleaved forests across geographic gradient[J]. Acta Ecologica Sinica, 2016, 36(5): 361-366.
[9] Liang J C, Ding Z F, Lie G W, et al. Species richness patterns of vascular plants and their drivers along an elevational gradient in the central Himalayas[J]. Global Ecology and Conservation, 2020, 24: e01279, doi: 10.1016/j.gecco.2020.e01279.
[10] 黄锡畴. 试论沼泽的分布和发育规律[J]. 地理科学, 1982, 2(3): 193-201.
[10] [Huang Xichou. An approach to distribution and development law of mire[J]. Scientia Geographica Sinica, 1982, 2(3): 193-201.]
[11] 孙菊, 李秀珍, 胡远满, 等. 大兴安岭沟谷冻土湿地植物群落分类、物种多样性和物种分布梯度[J]. 应用生态学报, 2009, 20(9): 2049-2056.
[11] [Sun Ju, Li Xiuzhen, Hu Yuanman, et al. Classification, species diversity, and species distribution gradient of permafrost wetland plant communities in Great Xing’an Mountain valleys of northeast China[J]. Chinese Journal of Applied Ecology, 2009, 20(9): 2049-2056.]
[12] 田玉清, 石道良, 张淑倩, 等. 河西走廊水生植物多样性格局、群落特征及影响因素[J]. 生态学报, 2020, 40(1): 202-212.
[12] [Tian Yuqing, Shi Daoliang, Zhang Shuqian, et al. Biogeographic pattern, main community types, and the influencing factors of aquatic macrophytes in the Hexi Corridor of northwest China[J]. Acta Ecologica Sinica, 2020, 40(1): 202-212.]
[13] 努尔巴衣·阿布都沙力克, 塔西甫拉提·特依拜, 巴哈尔古丽. 湿地综述与新疆湿地研究[J]. 新疆环境保护, 2004, 26(增刊1): 63-66.
[13] [Abdusalih Nurbay, Tiyip Tashpolat, Mamet Bahargul. Wetland synthesis and the study on wetland in Xinjiang[J]. Environmental Protection of Xinjiang, 2004, 26(Suppl. 1): 63-66.]
[14] 刘丽燕, 蔡新斌, 江晓珩, 等. 新疆湿地野生维管植物组成与植物区系的研究[J]. 干旱区资源与环境, 2015, 29(9): 83-88.
[14] [Liu Liyan, Cai Xinbin, Jiang Xiaoheng, et al. Species composition and flora components of wetland vascular plants in Xinjiang[J]. Journal of Arid Land Resources and Environment, 2015, 29(9): 83-88.]
[15] 新疆维吾尔自治区自然资源厅. 新疆维吾尔自治区第三次全国国土调查主要数据公报[EB/OL]. [2022-01-12]. http://zrzyt.xinjiang.gov.cn/xjgtzy/gzdt/202201/c7061f858692402da4f7b65e376cd2fb.shtml.
[15] [Department of Natural Resources of Xinjiang Uygur Autonomous Region. Main data bulletin of the third national land survey of Xinjiang Uygur Autonomous Region[EB/OL]. [2022-01-12]. http://zrzyt.xinjiang.gov.cn/xjgtzy/gzdt/202201/c7061f858692402da4f7b65e376cd2fb.shtml.]
[16] 毛炜峄, 南庆红, 史红政. 新疆气候变化特征及气候分区方法研究[J]. 气象, 2008, 34(10): 67-73.
[16] [Mao Weiyi, Nan Qinghong, Shi Hongzheng. Research of climatic regionalization with climate change in Xinjiang[J]. Meteorological Monthly, 2008, 34(10): 67-73.]
[17] 杜东升, 廖玉芳, 谢佰承. 湖南年蒸发量时空演变特征及气象影响因子分析[J]. 中国农学通报, 2014, 30(32): 263-268.
[17] [Du Dongsheng, Liao Yufang, Xie Baicheng. Spatiotemporal variability of annual evaporation and the impact of meterological factors in Hunan Province[J]. Chinese Agricultural Science Bulletin, 2014, 30(32): 263-268.]
[18] 杜连海, 罗盼盼, 吴记贵, 等. 松山自然保护区蒸发量和降水量的变化特征及其原因分析[J]. 中国农学通报, 2013, 29(14): 184-189.
[18] [Du Lianhai, Luo Panpan, Wu Jigui, et al. Change characteristics of evaporation and rainfall in Songshan Nature Reserve and their causes[J]. Chinese Agricultural Science Bulletin, 2013, 29(14): 184-189.]
[19] 王志恒, 唐志尧, 方精云. 物种多样性地理格局的能量假说[J]. 生物多样性, 2009, 17(6): 613-624.
[19] [Wang Zhiheng, Tang Zhiyao, Fang Jingyun. The species-energy hypothesis as a mechanism for species richness patterns[J]. Biodiversity Science, 2009, 17(6): 613-624.]
[20] 任立清. 艾比湖流域植被时空变化及驱动力分析[J]. 干旱区地理, 2022, 45(2): 467-477.
[20] [Ren Liqing. Spatiotemporal change and driving force of vegetation in Ebinur Lake Basin[J]. Arid Land Geography, 2022, 45(2): 467-477.]
[21] 钟巧, 焦黎, 李稚, 等. 博斯腾湖流域潜在蒸散发时空演变及归因分析[J]. 干旱区地理, 2019, 42(1): 103-112.
[21] [Zhong Qiao, Jiao Li, Li Zhi, et al. Spatial and temporal changes of potential evapotranspiration and its attribution in the Bosten Lake Basin[J]. Arid Land Geography, 2019, 42(1): 103-112.]
[22] 李利平, 努尔巴依·阿布都沙力克, 王少鹏, 等. 新疆野生维管束植物物种丰富度分布格局的水热解释[J]. 干旱区研究, 2011, 28(1): 25-30.
[22] [Li Liping, Abdusalih Nurbay, Wang Shaopeng, et al. Distribution patterns and climatic explanations of species richness of vascular plants in Xinjiang, China[J]. Arid Zone Research, 2011, 28(1): 25-30.]
[23] 周红章, 于晓东, 罗天宏, 等. 物种多样性变化格局与时空尺度[J]. 生物多样性, 2000, 8(3): 325-336.
[23] [Zhou Hongzhang, Yu Xiaodong, Luo Tianhong, et al. How does species diversity change? Spatio-temporal patterns and scales[J]. Chinese Biodiversity, 2000, 8(3): 325-336.]
[24] 郭玉琳, 赵勇, 周雅蔓, 等. 新疆天山山区夏季降水日变化特征及其与海拔高度关系[J]. 干旱区地理, 2022, 45(1): 57-65.
[24] [Guo Yulin, Zhao Yong, Zhou Yaman, et al. Diurnal variation of summer precipitation and its relationship with altitude in Tianshan Mountains of Xinjiang[J]. Arid Land Geography, 2022, 45(1): 57-65.]
[25] Hawkins B A, Porter E E. Water-energy balance and the geographic pattern of species richness of western Palearctic butterflies[J]. Ecological Entomology, 2010, 28(6): 678-686.
[26] Chen S B, Mao L F, Zhang J L, et al. Environmental determinants of geographic butterfly richness pattern in eastern China[J]. Biodiversity and Conservation, 2014, 23(6): 1453-1467.
文章导航

/