宁夏沿黄绿洲景观多样性时空变化与尺度依赖性
收稿日期: 2022-04-19
修回日期: 2022-05-17
网络出版日期: 2023-02-21
基金资助
宁夏回族自治区重点研发计划(2021BEG02010);国家自然科学基金项目(41271193)
Spatiotemporal variations and scale dependence of landscape diversity in oasis along the Yellow River in Ningxia
Received date: 2022-04-19
Revised date: 2022-05-17
Online published: 2023-02-21
景观多样性指数(LDI)不仅是景观生态学研究中的一个重要指标,而且也是生物多样保护中的重要层次。基于土地利用栅格数据(30 m分辨率),在ArcMap环境中采用Neighborhood和Focal工具对宁夏沿黄绿洲LDI时空变化和尺度依赖特征进行了研究。结果表明:(1) 基本单元(正方形)边长90~6000 m 5个时期重复统计分析表明宁夏沿黄绿洲景观在空间上具有明显的尺度依赖特征,转折点在3000 m。(2) 近50 a来研究区LDI变化具有周期性,2000年是转折点。其中,1975—2000年LDI呈降低趋势,LDI分区分析显示以退化区斑块类型面积(CA)最大和好转区CA最小为主要特点,分别为6840 km2和1332 km2。2000—2020年LDI呈增加趋势,以稳定区CA最大和退化区CA最小为主要特点,分别为7848 km2和792 km2;由于此阶段初始LDI(2000年)最低,LDI后期好转程度没有达到前期水平。(3) LDI分级面积转换以前期好转区向后期稳定区流转(796 km2,占好转区60.5%)和退化区分别向稳定区(3519 km2,占退化区51.5%)、好转区(3036 km2,占退化区44.4%)流转为主要特征。(4) 景观多样性变化格局以CA与相对分裂度指数(RSI)呈负关联为特点,这种关系机制在不同时期和不同变化类型中具有普遍性。总的来看,在区域景观变化研究中确定分析指标在时空尺度上的变化转折点既是保障研究结果具有借鉴和共享的必要条件,也是区域景观多样性可视化表达与分析的基础。
董春媛 , 黄海涛 , 乔荣荣 , 罗立辉 , 常学礼 . 宁夏沿黄绿洲景观多样性时空变化与尺度依赖性[J]. 干旱区地理, 2023 , 46(1) : 76 -85 . DOI: 10.12118/j.issn.1000-6060.2022.161
The landscape diversity index (LDI) is not only an important indicator in landscape ecology research but also an important component in biodiversity conservation. Based on the land use/cover raster data (30-m resolution), the spatiotemporal variation and scale-dependence characteristics of the LDI of an oasis along the Yellow River in Ningxia, China, have been studied using Neighborhood and Focal tools in ArcMap from 1975 to 2000. The results are as follows: (1) The LDI, which is measured by a square with a side length from 90 m to 6000 m, had obvious spatial scale-dependent characteristics based on five times repeat, and its turning point was 3000 m. (2) The change trend of the LDI had been cyclical in the past decades, with a turning point of 2000. During the study period, the LDI exhibited a decreasing trend from 1975 to 2000, and the analysis of LDI zoning indicated that the main characteristics were as follows: the class area (CA) of the degraded area was the largest, and the CA of the improved area was the smallest, which were 6840 km2 and 1332 km2, respectively. In contrast, there was an increasing trend for the LDI from 2000 to 2020, mainly characterized by the maximum CA in the impervious area and the minimum CA in the degraded area, which were 7848 km2 and 792 km2, respectively. Because the initial LDI in 2000 was the lowest in the entire period, its improvement status in the later period did not reach that of the early period. (3) The conversions of the LDI-grading area were mainly characterized by the transfer from the early improved area to the late impervious area (796 km2, 60.5% of the improved area) and the transfer from the degraded area to the impervious area (3519 km2, 51.5% of the degraded area) and the improved area (3036 km2, 44.4% of the degraded area), respectively. (4) The change in the landscape diversity pattern was characterized by a negative correlation between CA and relative splitting index, and this relationship mechanism was universal in different periods and change types. Thus, it is to best understand the landscape diversity change with credible spatiotemporal scales in a regional landscape study. It is necessary to ensure that the research results are not only used for reference and sharing but also used to visualize and analyze regional landscape diversity.
[1] | 罗格平, 周成虎, 陈曦. 干旱区绿洲景观尺度稳定性初步分析[J]. 干旱区地理, 2004, 27(4): 471-476. |
[1] | [Luo Geping, Zhou Chenghu, Chen Xi. Preliminary analysis on the oasis stability at the landscape level in the arid regions[J]. Arid Land Geography, 2004, 27(4): 471-476.] |
[2] | Ahlqvist O, Shortridge A. Spatial and semantic dimensions of landscape heterogeneity[J]. Landscape Ecology, 2010, 25(4): 573-590. |
[3] | Miao C L, Sun L Y, Yang L. The studies of ecological environmental quality assessment in Anhui Province based on ecological footprint[J]. Ecological Indicators, 2016, 60: 879-883. |
[4] | 元冰瑜, 高建华, 池源, 等. 1990—2020年江苏省海岸带景观生态状况指数跨尺度时空特征[J]. 应用生态学报, 2022, 33(2): 489-499. |
[4] | [Yuan Bingyu, Gao Jianhua, Chi Yuan, et al. Cross-scale spatiotemporal characteristics of landscape ecological conditions index in coastal zone of Jiangsu Province, China during 1990—2020[J]. Chinese Journal of Applied Ecology, 2022, 33(2): 489-499.] |
[5] | 杨馗, 信桂新, 蒋好雨, 等. 基于最佳尺度的景观生态风险时空变化研究——以重庆市江津区为例[J]. 生态与农村环境学报, 2021, 37(5): 576-586. |
[5] | [Yang Kui, Xin Guixin, Jiang Haoyu, et al. Study on spatiotemporal changes of landscape ecological risk based on the optimal spatial scale: A case study of Jiangjin District, Chongqing City[J]. Journal of Ecology and Rural Environment, 2021, 37(5): 576-586.] |
[6] | 刘明亮, 唐先明, 刘纪远, 等. 基于1 km格网的空间数据尺度效应研究[J]. 遥感学报, 2001, 5(3): 183-190, 243-244. |
[6] | [Liu Mingliang, Tang Xianming, Liu Jiyuan, et al. Reasearch on scaling effect based on 1 km grid cell data[J]. National Remote Sensing Bulletin, 2001, 5(3): 183-190, 243-244.] |
[7] | 张琪, 罗格平, 李龙辉, 等. 基于土地利用/覆被变化表征的现代绿洲演变过程——以天山北坡三工河流域为例[J]. 地理学报, 2016, 71(7): 1157-1171. |
[7] | [Zhang Qi, Luo Geping, Li Longhui, et al. Modern oasis evolution analysis based on land-use and land-cover change: A case study in Sangong River Basin on the northern slope of Tianshan Mountains[J]. Acta Geographica Sinica, 2016, 71(7): 1157-1171.] |
[8] | 陈爱莲, 孙然好, 陈利顶. 传统景观格局指数在城市热岛效应评价中的适用性[J]. 应用生态学报, 2012, 23(8): 2077-2086. |
[8] | [Chen Ailian, Sun Ranhao, Chen Liding. Applicability of traditional landscape metrics in evaluating urban heat island effect[J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2077-2086.] |
[9] | O’neill R, Hunsaker C, Timmins S P, et al. Scale problems in reporting landscape pattern at the regional scale[J]. Landscape Ecology, 1996, 11(3): 169-180. |
[10] | 崔闪闪, 刘庆, 王静. 空间粒度变化对县域农村居民点景观指数的影响——以江苏省大丰市为例[J]. 中国农业资源与区划, 2017, 38(3): 20-26. |
[10] | [Cui Shanshan, Liu Qing, Wang Jing. Effects of changing grain size on landscape indices of rural settlement at county scale of Binhai development zone: A case study of Dafeng County in Jiangsu Province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(3): 20-26.] |
[11] | 梁国付, 卢训令, 贾振宇, 等. 林地面积比例梯度下景观组成和构型对生物多样性的影响[J]. 生态学报, 2016, 36(10): 2896-2904. |
[11] | [Liang Guofu, Lu Xunling, Jia Zhenyu, et al. Effects of woodland composition and configuration along a woodland area ratio gradient on biodiversity conservation[J]. Acta Ecologica Sinica, 2016, 36(10): 2896-2904.] |
[12] | 吕金霞, 蒋卫国, 王文杰, 等. 近30年来京津冀地区湿地景观变化及其驱动因素[J]. 生态学报, 2018, 38(12): 4492-4503. |
[12] | [Lü Jinxia, Jiang Weiguo, Wang Wenjie, et al. Wetland landscape pattern change and its driving forces in Beijing-Tianjin-Hebei region in recent 30 years[J]. Acta Ecologica Sinica, 2018, 38(12): 4492-4503. |
[13] | 祖拜代·木依布拉, 夏建新, 普拉提·莫合塔尔, 等. 克里雅河中游土地利用/覆被与景观格局变化研究[J]. 生态学报, 2019, 39(7): 2322-2330. |
[13] | [Muyibul Zubaida, Xia Jianxin, Muhtar Polat, et al. Land use and landscape pattern changes in the middle reaches of the Keriya River[J]. Acta Ecologica Sinica, 2019, 39(7): 2322-2330.] |
[14] | 李莹莹, 尤罗利, 陈永生, 等. 环巢湖地区多水塘景观时空格局演变特征及其驱动因素[J]. 生态学报, 2018, 38(17): 6280-6291. |
[14] | [Li Yingying, You Luoli, Chen Yongsheng. Spatial-temporal characteristics of multi-pond landscape change and their driving factors in the Chaohu Basin, China[J]. Acta Ecologica Sinica, 2018, 38(17): 6280-6291.] |
[15] | 梁佳欣, 李新举. 南四湖湿地景观格局脆弱度的时空分异特征[J]. 应用生态学报, 2018, 29(2): 626-634. |
[15] | [Liang Jiaxin, Li Xinju, et al. Characteristics of temporal-spatial differentiation in landscape pattern vulnerability in Nansihu Lake wetland, China[J]. Chinese Journal of Applied Ecology, 2018, 29(2): 626-634.] |
[16] | 杨庚, 张振佳, 曹银贵, 等. 晋北大型露天矿区景观生态风险时空异质性[J]. 生态学杂志, 2021, 40(1): 187-198. |
[16] | [Yang Geng, Zhang Zhenjia, Cao Yingui, et al. Spatial-temporal heterogeneity of landscape ecological risk of large-scale open-pit mining area in north Shanxi[J]. Chinese Journal of Ecology, 2021, 40(1): 187-198.] |
[17] | 毛忠超, 李森, 张志山, 等. 荒漠-过渡带绿洲界定——以石羊河流域为例[J]. 中国沙漠, 2020, 40(2): 177-184. |
[17] | [Mao Zhongchao, Li Sen, Zhang Zhishan, et al. Desert-ecotone-oasis division: Taking the Shiyang River Basin as an example[J]. Journal of Desert Reseach, 2020, 40(2): 177-184.] |
[18] | 周梅, 张飞, 王娟, 等. 新疆艾比湖流域景观格局尺度效应[J]. 干旱区研究, 2017, 34(5): 1184-1195. |
[18] | [Zhou Mei, Zhang Fei, Wang Juan, et al. Effect of landscape pattern scale in the Ebinur Lake Watershed, Xinjiang[J]. Arid Zone Reasearch, 2017, 34(5):1184-1195.] |
[19] | 张军峰, 孟凡浩, 包安明, 等. 新疆孔雀河流域人工绿洲近40年土地利用/覆被变化[J]. 中国沙漠, 2018, 38(3): 664-672. |
[19] | [Zhang Junfeng, Meng Fanhao, Bao Anming, et al. LUCC analysis of the upstream of the Kongqi River, Xinjiang, China[J]. Journal of Desert Reseach, 2018, 38(3): 664-672.] |
[20] | 张秀霞, 颉耀文, 吕利利. 敦煌绿洲近30年的景观变化研究[J]. 干旱区资源与环境, 2018, 32(3): 170-175. |
[20] | [Zhang Xiuxia, Xie Yaowen, Lü Lili. Landscape changes in Dunhuang oasis for recent 30 years[J]. Journal of Arid Land Resources and Environment, 2018, 32(3): 170-175.] |
[21] | 苏芝屯, 吴春燕, 何彤慧, 等. 银川平原草甸湿地土壤养分特征与植物响应[J]. 干旱区研究, 2019, 36(4): 816-823. |
[21] | [Su Zhitun, Wu Chunyan, He Tonghui, et al. Soil nutrient characteristics and plant response in meadow wetland in the Yinchuan Plain[J]. Arid Zone Research, 2019, 36(4): 816-823.] |
[22] | 张兴平. 宁夏平原绿洲生态经济系统的问题与调控对策[J]. 干旱区地理, 1995, 18(1): 14-20. |
[22] | [Zhang Xingping. Problems and their countermeasures of the oasis eco-economic system in the Ningxia Plain[J]. Arid Land Geography, 1995, 18(1): 14-20.] |
[23] | 中国科学院遥感与数字地球研究所. 2015年全球30米精细地表覆盖产品[R]. 北京: 中国科学院遥感与数字地球研究所, 2019. |
[23] | [Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences. 2015 Global 30 m fine surface covering products[R]. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 2019.] |
[24] | 张肖. 全球30米地表覆盖定量遥感分类与制图研究[D]. 北京: 中国科学院大学, 2020. |
[24] | [Zhang Xiao. Global land-cover classification and mapping at 30 m using quantitative remote sensing technique[D]. Beijing: University of Chinese Academy of Sciences, 2020.] |
[25] | McGarigal K, Cushman S, Ene E. Spatial pattern analysis program for categorical and continuous maps[M]. Amherst: University of Massachusetts, 2012. |
[26] | Levy H. The rationale of the mean-standard deviation analysis: Comment[J]. The American Economic Review, 1974, 64(3): 434-441. |
[27] | 李小妹, 严平, 刘保莉. 基于流域尺度的中国北方沙地空间分布特征[J]. 干旱区资源与环境, 2021, 35(4): 104-111. |
[27] | [Li Xiaomei, Yan Ping, Liu Baoli. Spatial distribution characteristics of sandy land in northern China based on watershed scale landscape pattern characteristics of aeolian-fluvial interactions at the scale of watersheds in northern China[J]. Journal of Arid Land Resources and Environment, 2021, 35(4): 104-111.] |
[28] | 王一山, 张飞, 陈瑞, 等. 乌鲁木齐市土地生态安全综合评价[J]. 干旱区地理, 2021, 44(2): 427-440. |
[28] | [Wang Yishan, Zhang Fei, Chen Rui, et al. Comprehensive ecological security assessment: A case study of Urumqi City[J]. Arid Land Geography, 2021, 44(2): 427-440.] |
[29] | 乔斌, 祝存兄, 曹晓云, 等. 格网尺度下青海玛多县土地利用及生态系统服务价值空间自相关分析[J]. 应用生态学报, 2020, 31(5): 1660-1672. |
[29] | [Qiao Bin, Zhu Cunxiong, Cao Xiaoyun, et al. Spatial autocorrelation analysis of land use and ecosystem service value in Maduo County, Qinghai Province, China at the grid scale[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1660-1672.] |
[30] | 许凤娇, 吕晓. 基于土地利用变化的江苏沿海地区生态风险格局[J]. 生态学报, 2018, 38(20): 7312-7325. |
[30] | [Xu Fengjiao, Lü Xiao. Ecological risk pattern based on land use changes in Jiangsu coastal areas[J]. Acta Ecologica Sinica, 2018, 38(20): 7312-7325.] |
/
〈 | 〉 |