气候与水文

1961—2020年青海高原日照时数时空变化特征

  • 周丹 ,
  • 保广裕 ,
  • 苏献锋 ,
  • 王力 ,
  • 李宝华
展开
  • 1.青海省防灾减灾重点实验室,青海 西宁 810001
    2.青海省气象服务中心,青海 西宁 810001
    3.青海省气象干部培训学院,青海 西宁 810001
周丹(1989-),男,博士研究生,工程师,主要从事专业气象预报服务研究. E-mail: www.zhoudan.6666@163.com

收稿日期: 2022-05-19

  修回日期: 2022-07-18

  网络出版日期: 2023-02-21

基金资助

青海省防灾减灾重点实验室开放基金项目(KFZ-2021-Z13);国家自然科学基金项目(42165014)

Spatiotemporal variation characteristics of sunshine hours in Qinghai Plateau from 1961 to 2020

  • Dan ZHOU ,
  • Guangyu BAO ,
  • Xianfeng SU ,
  • Li WANG ,
  • Baohua LI
Expand
  • 1. Qinghai Provincial Key Laboratory of Disaster Prevention and Mitigation, Xining 810001, Qinghai, China
    2. Qinghai Provincial Meteorological Service Center, Xining 810001, Qinghai, China
    3. Qinghai Provincial Meteorological Cadre Training College, Xining 810001, Qinghai, China

Received date: 2022-05-19

  Revised date: 2022-07-18

  Online published: 2023-02-21

摘要

太阳辐射是地球系统的主要能源,与人类的生活密切相关。通过选取青海高原50个气象观测站点1961—2020年逐月日照时数数据,分析了青海高原整体、不同纬度地区、不同海拔高度地区日照时数时空变化特征。结果表明:(1) 1961—2020年青海高原年日照时数呈显著降低趋势,且在2004年发生突变降低。从空间分布来看,除南部个别站点日照时数持平或略微增加外,其余地区年日照时数均呈显著降低趋势,其中柴达木地区和东部农业区降低趋势最显著。(2) 青海高原高纬度地区年日照时数降低趋势显著大于低纬度地区。春季不同纬度地区日照时数变化趋势均较小,夏季和冬季纬度相对较高地区日照时数减少趋势显著大于纬度较低地区,秋季纬度较低和纬度较高地区日照时数减少趋势显著大于中纬度地区。(3) 青海高原海拔相对较低地区年日照时数降低趋势显著大于海拔相对较高地区。春季不同海拔高度地区日照时数变化趋势均较小,基本持平或略微减少,夏季和冬季海拔相对较低地区日照时数减少趋势显著大于海拔较高地区,秋季不同海拔高度日照时数均呈减少趋势,但是减少趋势显著性状况差异较大。

本文引用格式

周丹 , 保广裕 , 苏献锋 , 王力 , 李宝华 . 1961—2020年青海高原日照时数时空变化特征[J]. 干旱区地理, 2023 , 46(1) : 36 -46 . DOI: 10.12118/j.issn.1000-6060.2022.231

Abstract

Solar radiation is the primary energy source of the earth’s system and is closely related to human life. By selecting the monthly sunshine hour data of 50 meteorological observation stations in the Qinghai Plateau of China from 1961 to 2020, the spatiotemporal variation characteristics of sunshine hours in the Qinghai Plateau as a whole, different latitudes, and different altitudes were analyzed. The results are as follows: (1) The annual sunshine hours in the Qinghai Plateau exhibit a significant downward trend from 1961 to 2020, and a sudden decrease occurred in 2004. From the perspective of spatial distribution, the annual sunshine hours in other regions showed a significant decreasing trend except that the sunshine hours in some southern stations is flat or slightly increased. And the decreasing trend is most significant in Qaidam area and eastern agricultural area. (2) The decreasing trend of sunshine hours in high-latitude areas is significantly greater than that in low-latitude areas of the Qinghai Plateau. The variation trend of sunshine hours at different latitudes in spring is small. In summer and winter, the decreasing trend of sunshine hours at relatively high latitudes is significantly greater than that at low latitudes, and in autumn, the decreasing trend of sunshine hours at low and high latitudes is significantly greater than that at middle latitudes. (3) The decreasing trend of annual sunshine hours in relatively low-altitude areas of the Qinghai Plateau is significantly greater than that in relatively high-altitude areas. The change trend of sunshine hours at different altitudes in spring is small, flat, or slightly reduced. The decreasing trend of sunshine hours at relatively low altitudes is significantly greater than that at higher altitudes in summer and winter. The sunshine hours at different altitudes in autumn exhibit a decreasing trend, but there is a significant difference in the decreasing trend.

参考文献

[1] IPCC. Climate change 2013:The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on climate change[R]. Cambridge: Cambridge University Press, 2013.
[2] 周波涛. 全球气候变暖: 浅谈从AR5到AR6的认知进展[J]. 大气科学学报, 2021, 44(5): 667-671.
[2] [Zhou Botao. Global warming: Scientific progress from AR5 to AR6[J]. Transactions of Atmospheric Sciences, 2021, 44(5): 667-671.]
[3] Chang Z G, Chen Y X, Zhao Y K, et al. Association of sunshine duration with acute myocardial infarction hospital admissions in Beijing, China: A time-series analysis within-summer[J]. Science of the Total Environment, 2022, 828: 154528-154528.
[4] Song L B, Jin J M. Effects of sunshine hours and daily maximum temperature declines and cultivar replacements on maize growth and yields[J]. Agronomy, 2020, 10(12): 1862-1862.
[5] 白慧敏, 龚志强, 孙桂全, 等. 气象要素对华北地区夏季植被覆盖度的影响[J]. 大气科学, 2022, 46(1): 27-39.
[5] [Bai Huimin, Gong Zhiqiang, Sun Guiquan, et al. Influence of meteorological elements on summer vegetation coverage in North China[J]. Chinese Journal of Atmospheric Sciences, 2022, 46(1): 27-39.]
[6] Xiong J H, Wang Z L, Lai C G. Spatiotemporal variability of sunshine duration and influential climatic factors in China’s mainland during 1959—2017[J]. International Journal of Climatology, 2020, 40(15): 6282-6300.
[7] 刘卫平, 魏文寿, 唐湘玲. 阿克苏地区近45年日照时数变化特征[J]. 干旱区地理, 2008, 31(2): 197-202.
[7] [Liu Weiping, Wei Wenshou, Tang Xiangling. Variation of sunshine hour in recent 45 years in Aksu Prefecture[J]. Arid Land Geography, 2008, 31(2): 197-202.]
[8] Li J, Wang Z L, Lai C G. Severe drought events inducing large decrease of net primary productivity in mainland China during 1982—2015[J]. Science of the Total Environment, 2020, 703: 135541, doi: 10.1016/j.scitotenv.2019.135541.
[9] Stanhill G, Cohen S. Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences[J]. Agricultural and Forest Meteorology, 2001, 107(4): 255-278.
[10] 中国气象局气候变化中心. 中国气候变化蓝皮书2020[M]. 北京: 科学出版社, 2020.
[10] [CMA Climate Change Centre. Blue book on climate change in China 2020[M]. Beijing: Science Press, 2020.]
[11] 肖风劲, 张旭光, 廖要明, 等. 中国日照时数时空变化特征及其影响分析[J]. 中国农学通报, 2020, 36(20): 92-100.
[11] [Xiao Fengjin, Zhang Xuguang, Liao Yaoming, et al. Sunshine duration in China: Variation characteristics and its influence[J]. Chinese Agricultural Science Bulletin, 2020, 36(20): 92-100.]
[12] 周晓宇, 张新宜, 崔妍, 等. 1961—2009年东北地区日照时数变化特征[J]. 气象与环境学报, 2013, 29(5): 112-120.
[12] [Zhou Xiaoyu, Zhang Xinyi, Cui Yan, et al. The characteristics of sunshine duration from 1961 to 2009 in northeast China[J]. Journal of Meteorology and Environment, 2013, 29(5): 112-120.]
[13] 戴声佩, 李海亮, 刘海清, 等. 全球气候变暖背景下华南地区农业气候资源时空变化特征[J]. 中国农业资源与区划, 2014, 35(1): 52-60.
[13] [Dai Shengpei, Li Hailiang, Liu Haiqing, et al. The spatio-temporal change characteristics of agriculture climate resources in southern China under the background of global warming[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2014, 35(1): 52-60.]
[14] 陈少勇, 张康林, 邢晓宾, 等. 中国西北地区近47 a日照时数的气候变化特征[J]. 自然资源学报, 2010, 25(7): 1142-1152.
[14] [Chen Shaoyong, Zhang Kanglin, Xing Xiaobin, et al. Climatic change of sunshine duration in northwest China during the last 47 year[J]. Journal of Natural Resources, 2010, 25(7): 1142-1152.]
[15] 解丽娜. 《青海打造国家清洁能源产业高地行动方案》内容摘要[N]. 青海日报, 2021-07-14( 007).
[15] [ Xie Lina. Content summary of “Qinghai action plan for building a national highland of clean energy industry”[N]. Qinghai Daily, 2021-07-14( 007).]
[16] 付建新, 曹广超, 李玲琴, 等. 1960—2014年祁连山日照时数时空变化特征[J]. 山地学报, 2018, 36(5): 709-721.
[16] [Fu Jianxin, Cao Guangchao, Li Lingqin, et al. Temporal and spatial variation characteristics of sunlight hours in the Qilian Mountain, China from 1960 to 2014[J]. Mountain Research, 2018, 36(5): 709-721.]
[17] 何小武, 刘金青. 1961—2016年黄河源头地区日照时数变化特征分析[J]. 现代农业科技, 2018(12): 206-208.
[17] [He Xiaowu, Liu Jinqing. Analysis on variation characteristics of sunshine hours in the source area of the Yellow River from 1961 to 2016[J]. Modern Agricultural Science and Technology, 2018(12): 206-208.]
[18] 王莘. 青海省气候变化评估报告[M]. 北京: 气象出版社, 2012.
[18] [Wang Xin. Climate change assessment report of Qinghai Province[M]. Beijing: Meteorological Publishing House, 2012.]
[19] 蒋冲, 刘晓磊, 程楠楠, 等. 秦岭南北日照时数时空变化及突变特征[J]. 干旱区地理, 2013, 36(3): 416-424.
[19] [Jiang Chong, Liu Xiaolei, Cheng Nannan, et al. Spatial-temporal variations and mutations of sunshine hours in the northern and southern regions of the Qinling Mountains[J]. Arid Land Geography, 2013, 36(3): 416-424.]
[20] 江志红, 黄群, 李庆祥. 近50年中国降水序列均一性检验与订正研究[J]. 气候与环境研究, 2008, 13(1): 67-74.
[20] [Jiang Zhihong, Huang Qun, Li Qingxiang. Study of precipitation series homogeneous adjustment and their correction over China in the last 50 years[J]. Climatic and Environmental Research, 2008, 13(1): 67-74.]
[21] Gan T Y. Hydroclimatic trends and possible climatic warming in the Canadian Prairies[J]. Water Resource Research, 1998, 34(11): 3009-3015.
[22] 褚健婷, 夏军, 许崇育, 等. 海河流域气象和水文降水资料对比分析及时空变异[J]. 地理学报, 2009, 64(9): 1083-1092.
[22] [Chu Jianting, Xia Jun, Xu Chongyu, et al. Comparison and spatial-temporal variability of daily precipitation data of weather stations and rain gauges in Haihe River Basin[J]. Acta Geographica Sinica, 2009, 64(9): 1083-1092.]
[23] 周丹. 1961—2013年华北地区气象干旱时空变化及其成因分析[D]. 兰州: 西北师范大学, 2015.
[23] [Zhou Dan. Temporal and spatial changes and causes of meteorological drought in North China from 1961 to 2013[J]. Lanzhou: Northwest Normal University, 2015.]
[24] 马柱国, 邵丽娟. 中国北方近百年干湿变化与太平洋年代际振荡的关系[J]. 大气科学, 2006, 30(3): 464-474.
[24] [Ma Zhuguo, Shao Lijuan. Relationship between dry/wet variation and the pacific decade oscillation in northern China during the last 100 years[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(3): 464-474.]
[25] 华维, 董一平, 范广洲. 青藏高原年日照时数变化的时空特征[J]. 山地学报, 2010, 28(1): 21-30.
[25] [Hua Wei, Dong Yiping, Fan Guangzhou. The analysis of spatial and temporal characteristics of annual sunshine duration over Qinghai-Tibet Plateau[J]. Journal of Mountain Science, 2010, 28(1): 21-30.]
[26] 杜军, 高佳佳, 次旺顿珠. 1971—2019年羌塘国家级自然保护区日照时数变化特征及其影响因素[J]. 太阳能学报, 2022, 43(2): 287-295.
[26] [Du Jun, Gao Jiajia, Ciwangdunzhu. Spatio-temporal change of sunshine duration and its influence factors in Chang Tang Nature Reserve of Tibet from 1971 to 2019[J]. Acta Energiae Solaris Sinica, 2022, 43(2): 287-295.]
文章导航

/