区域发展

新疆区域经济联系网络时空格局演变

  • 李南 ,
  • 李晓东 ,
  • 刘想 ,
  • 刘柏伶
展开
  • 新疆大学地理与遥感科学学院,新疆 乌鲁木齐 830017
李南(1997-),女,硕士研究生,主要从事经济地理研究. E-mail: 377030752@qq.com

收稿日期: 2022-03-22

  修回日期: 2022-05-05

  网络出版日期: 2023-02-01

基金资助

国家自然科学基金项目(41861037)

Evolution of spatial and temporal pattern of regional economic connection network in Xinjiang

  • Nan LI ,
  • Xiaodong LI ,
  • Xiang LIU ,
  • Bailing LIU
Expand
  • College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, Xinjiang, China

Received date: 2022-03-22

  Revised date: 2022-05-05

  Online published: 2023-02-01

摘要

以新疆15个地州市为研究对象,运用区域流强度模型和引力模型,分析2010—2019年新疆辐射能力以及区域间的经济联系,采用社会网络分析方法探究经济联系网络结构演变特征,为优化新疆区域经济网络结构和区域经济一体化发展提出建议。结果表明:(1) 区域流强度整体表现为北高南低的发展格局,10 a间平均提升率达60%,以乌鲁木齐市和喀什地区为首区域流强度相关指标增长最为显著,但中心区域的辐射带动能力总体较弱。(2) 2019年新疆弱经济联系数量占比降至48.57%,低等级经济联系格局显著,逐步形成以乌鲁木齐市为中心、克拉玛依市和石河子市为次中心的放射状空间联系格局,10 a间经济联系整体略有增长,过程中虹吸效应远大于涓滴效应。(3) 网络中心势2019年达63.61%,整体中心性水平以极化效应为主,区域经济发展不均衡,凝聚子群内部成员不断发生变化,空间分割现象显著。新疆整体经济联系时空网络格局“核心-边缘”现象显著,呈现出“东北强、西南弱”的空间分布格局。

本文引用格式

李南 , 李晓东 , 刘想 , 刘柏伶 . 新疆区域经济联系网络时空格局演变[J]. 干旱区地理, 2022 , 45(6) : 1978 -1987 . DOI: 10.12118/j.issn.1000-6060.2022.117

Abstract

Xinjiang is an underdeveloped region in China, and as the core area of the Western Development and the “Belt and Road”, it is an important gateway for China to open up to Central and South Asia. The linkages and development of Xinjiang’s regional economy are of great relevance to the quality development of the economy and its organic integration into the overall layout of the country’s opening up to the west. Using ArcGIS 10.2 and Ucinet 6.2 software, this study uses 2010, 2015, and 2019 as time points, relying on the regional flow model and gravity model, to measure regional flow intensity and regional economic linkages and analyze the economic network structure evolution of 15 prefectures and cities in Xinjiang, China over the decade in terms of point degree centrality and cohesive subgroups through social network analysis. The research results show the following: (1) Regional flow intensity shows high and low development patterns in the north and south, respectively, with an average improvement rate of 60% over the decade, with Urumqi City and Kashgar region leading the way in terms of regional flow intensity-related indicators, with both partially increasing, but the core drive of the central region is generally slightly weaker, and the radiation range and intensity should be strengthened. (2) The number of weak economic ties in Xinjiang dropped to 48.57% in 2019, but the pattern of low-level economic ties is significant. Xinjiang’s regional economic linkages have not fully formed a network and still suffer from development deficiencies, gradually forming a radial spatial linkage pattern with Urumqi City as the center and Karamay City and Shihezi City as sub-centers; however, the overall degree of economic linkage enhancement over the decade is not high, and the siphoning effect is significantly greater than the trickle-down effect in the process. (3) The structure of Xinjiang’s economic linkage network from 2010 to 2019 remains unstable, with the central potential of the network reaching 63.61% in 2019. Regions with strong economic linkages have strong agglomeration, diffusion, and resource control capabilities over the surrounding areas and show a higher degree of point centrality in the network. The spatial segmentation phenomenon is severe, and the overall spatiotemporal network pattern of economic ties in Xinjiang has a significant “core-edge” phenomenon, showing a spatial distribution pattern of “strong in the northeast and weak in the southwest”.

参考文献

[1] Krisztin T, Fischer M M. The gravity model for international trade: Specification and estimation issues[J]. Spatial Economic Analysis, 2015, 10(4): 451-470.
[2] Reilly W J. Methods for the study of retail relationships[M]. Austin: University of Texas Press, 1929.
[3] Zipf G K. The PIP2/D Hypothesis: On the intercity movement of persons[J]. American Sociological Review, 1946(12): 677-686.
[4] 顾朝林, 庞海峰. 基于重力模型的中国城市体系空间联系与层域划分[J]. 地理研究, 2008, 27(1): 1-12.
[4] [Gu Chaolin. Pang Haifeng. Study on spatial relations of Chinese urban system: Gravity model approach[J]. Geographical Research, 2008, 27(1): 1-12.]
[5] 赵东霞, 韩增林, 赵彪. 东北地区城市经济联系的空间格局及其演化[J]. 地理科学, 2016, 36(6): 846-854.
[5] [Zhao Dongxia, Han Zenglin, Zhao Biao. Spatial framework and change of the northeast China’s economic links[J]. Scientia Geographica Sinica, 2016, 36(6): 846-854.]
[6] 叶珊珊, 曹明明, 胡胜. 关中平原城市群经济联系网络结构演变及对经济增长影响研究[J]. 干旱区地理, 2022, 45(1): 277-286.
[6] [Ye Shanshan, Cao Mingming, Hu Sheng. Evolution of economic connection network structure in the Guanzhong Plain city cluster and its impact on economic growth[J]. Arid Land Geography, 2022, 45(1): 277-286.]
[7] Castells M. The rise of the network society[M]. Oxford: Blackwell, 1996.
[8] 孙阳, 张落成, 姚士谋. 基于快递企业总-分机构的中国城市网络空间结构[J]. 中国科学院大学学报, 2017, 34(5): 591-597.
[8] [Sun Yang, Zhang Luocheng, Yao Shimou. Spatial structure of urban network in China based on the headquarters and branches of express enterprises[J]. Journal of University of Chinese Academy of Sciences, 2017, 34(5): 591-597.]
[9] 王开泳, 邓羽. 基于微博数据的中原城市群空间联系强度测度[J]. 中国科学院大学学报, 2016, 33(6): 775-782.
[9] [Wang Kaiyong, Deng Yu. Identification of spatial connection intensity of Zhongyuan urban agglomeration based on microblogging[J]. Journal of University of Chinese Academy of Sciences, 2016, 33(6): 775-782.]
[10] 姜博, 修春亮, 陈才. 环渤海地区城市流强度动态分析[J]. 地域研究与开发, 2008, 27(3): 11-15.
[10] [Jiang Bo, Xiu Chunliang, Chen Cai. Dynamic analysis of the intensity of urban flow in Bohai Rim[J]. Areal Research and Development, 2008, 27(3): 11-15.]
[11] 赵林, 韩增林, 马慧强. 中原经济区城市内在经济联系分析[J]. 经济地理, 2012, 32(3): 57-62, 8.
[11] [Zhao Lin, Han Zenglin, Ma Huiqiang. Analysis of the inherent functional relations of Central Plains economic region[J]. Economic Geography, 2012, 32(3): 57-62, 8.]
[12] 于谨凯, 马健秋. 山东半岛城市群经济联系空间格局演变研究[J]. 地理科学, 2018, 38(11): 1875-1882.
[12] [Yu Jinkai, Ma Jianqiu. Spatial pattern evolution of economic links in Shandong Peninsula urban agglomeration[J]. Scientia Geographica Sinica, 2018, 38(11): 1875-1882.]
[13] 王海江, 苗长虹, 乔旭宁. 黄河经济带中心城市服务能力的空间格局[J]. 经济地理, 2017, 37(7): 33-39.
[13] [Wang Haijiang, Miao Changhong, Qiao Xuning. Central cities external service capabilities spatial distribution of Yellow River economic belt[J]. Economic Geography, 2017, 37(7): 33-39.]
[14] 郭爱君, 毛锦凰. 丝绸之路经济带与西北城市群协同发展研究[J]. 甘肃社会科学, 2016(1): 74-79.
[14] [Guo Aijun, Mao Jinhuang. Study on the synergistic development of silk road economic belt and northwest urban agglomeration[J]. Gansu Social Sciences, 2016(1): 74-79.]
[15] 王方方, 杨焕焕. 粤港澳大湾区城市群空间经济网络结构及其影响因素研究——基于网络分析法[J]. 华南师范大学学报(社会科学版), 2018(4): 110-120, 191.
[15] [Wang Fangfang, Yang Huanhuan. Research on the urban agglomeration spatial economic network structure of Guangdong-Hongkong-Macao Greater Bay Area and its influencing factors: Based on analytic network process[J]. Journal of South China Normal University (Natural Science Edition), 2018(4): 110-120, 191.]
[16] 高新才, 杨芳. 丝绸之路经济带城市经济联系的时空变化分析——基于城市流强度的视角[J]. 兰州大学学报(社会科学版), 2015, 43(1): 9-18.
[16] [Gao Xincai, Yang Fang. Analysis of temporal-spatial changes of urban economic ties on the Silk Road economic belt: From the perspective of urban flow intensity[J]. Journal of Lanzhou University (Social Sciences Edition), 2015, 43(1): 9-18.]
[17] 李金叶, 杜晓宇. 援疆背景下的新疆经济发展研究[J]. 干旱区地理, 2014, 37(6): 1264-1271.
[17] [Li Jinye, Du Xiaoyu. Economic development of Xinjiang under the background of the counterpart support[J]. Arid Land Geography, 2014, 37(6): 1264-1271.]
[18] 张富涛, 钱勇生, 曾俊伟, 等. 高速铁路背景下西北地区铁路可达性与空间相互作用格局变化分析[J]. 干旱区地理, 2021, 44(4): 1164-1174.
[18] [Zhang Futao, Qian Yongsheng, Zeng Junwei, et al. Railway accessibility and spatial interaction pattern change in northwest China in the background of high speed rail[J]. Arid Land Geography, 2021, 44(4): 1164-1174.]
[19] 孔令章, 李晓东, 白洋, 等. 长距离高铁对沿线城市旅游经济联系的空间影响及角色分析——以兰新高铁为例[J]. 干旱区地理, 2019, 42(3): 681-688.
[19] [Kong Lingzhang, Li Xiaodong, Bai Yang, et al. Spatial effect of long-distance high-speed railway on tourism economic link and role analysis of cities along the railway: A case of Lanzhou-Xinjiang high-speed rail[J]. Arid Land Geography, 2019, 42(3): 681-688.]
[20] 效瑞, 白永平, 车磊, 等. 兰新高铁沿线县域可达性时空收敛效应与经济潜力特征分析[J]. 干旱区地理, 2020, 43(3): 831-838.
[20] [Xiao Rui, Bai Yongping, Che Lei, et al. Effect of time-space convergence and economic potential characteristics of county accessibility along the Lanzhou-Xinjiang high-speed railway[J]. Arid Land Geography, 2020, 43(3): 831-838.]
[21] 姚士谋, 朱英明, 陈振光, 等. 中国城市群[M]. 第二版. 合肥: 中国科学技术大学出版社, 2001: 144-157.
[21] [Yao Shimou, Zhu Yingming, Chen Zhenguang, et al. Chinese urban agglomerations[M]. 2nd ed. Hefei: University of Science and Technology of China Press, 2001: 144-157.]
[22] 朱英明. 城市群经济空间分析[M]. 北京: 科学出版社, 2004: 77-86.
[22] [Zhu Yingming. Economic spatial analysis of urban agglomerations[M]. Beijing: Science Press, 2004: 77-86.]
[23] 初楠臣, 张平宇, 吴相利, 等. 俄罗斯东部地区首府的城市流强度研究[J]. 地域研究与开发, 2021, 40(5): 82-87.
[23] [Chu Nanchen, Zhang Pingyu, Wu Xiangli, et al. Urban flow intensity in the capitals of eastern Russia[J]. Areal Research and Development, 2021, 40(5): 82-87.]
[24] Haggett P. Locational analysis in human geography[M]. London: Edward Arnold Ltd, 1965: 33-40.
[25] 郭卫东, 钟业喜, 傅钰. 长江中游城市群经济联系能力比较[J]. 华南师范大学学报(自然科学版), 2019, 51(3): 79-87.
[25] [Guo Weidong, Zhong Yexi, Fu Yu. Comparison of economic linkage capacity between the urban agglomerations in the middle reaches of the Yangtze River[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(3): 79-87.]
[26] Meng X L, Jia L M. Train timetable stability evaluation based on analysis of interior and exterior factors information entropy[J]. Applied Mathematics & Information Sciences, 2014, 8(3): 1319-1325.
[27] 刘军. 整体网分析讲义: UCINET软件实用指南[M]. 上海: 格致出版社上海人民出版社, 2009.
[27] [Liu Jun. Overall network analysis: UCINET software usage guide[M]. Shanghai: Shanghai People’s Publishing House, 2009.]
[28] 史琴琴, 康江江, 鲁丰先, 等. 山西省县域可达性及城市经济联系格局[J]. 地理科学进展, 2016, 35(11): 1340-1351.
[28] [Shi Qinqin, Kang Jiangjiang, Lu Fengxian, et al. Accessibility and urban economic linkages of counties in Shanxi Province[J]. Progress in Geography, 2016, 35(11): 1340-1351.]
[29] 王珏, 陈雯, 袁丰. 基于社会网络分析的长三角地区人口迁移及演化[J]. 地理研究, 2014, 33(2): 385-400.
[29] [Wang Jue, Chen Wen, Yuan Feng. Human mobility and evolution based on social network: An empirical analysis of Yangtze River Delta[J]. Geographical Research, 2014, 33(2): 385-400.]
[30] 孙宇, 彭树远. 长三角城市创新网络凝聚子群发育机制研究——基于多值ERGM[J]. 经济地理, 2021, 41(9): 22-30.
[30] [Sun Yu, Peng Shuyuan. Development mechanism of cohesive subgroups’ urban innovation networks in the Yangtze River Delta: Based on the valued ERGM[J]. Economic Geography, 2021, 41(9): 22-30.]
文章导航

/