收稿日期: 2022-03-04
修回日期: 2022-05-19
网络出版日期: 2023-02-01
基金资助
国家自然基金(51779209);山西省高校哲学社会科学项目(2020W165)
Groundwater storage and population exposure in the Yellow River Basin based on GRACE data
Received date: 2022-03-04
Revised date: 2022-05-19
Online published: 2023-02-01
近年来黄河流域人与水资源矛盾愈发突出,尤其是地下水储量的过度消耗已成为限制该区域人与自然和谐发展的主要矛盾之一。基于重力反演与气候实验卫星数据和全球陆面数据同化系数数据,根据流域水循环与水量平衡原理,测算2003—2016年黄河流域地下水储量的变化情况,在探究其时空变化特征的基础上,识别了地下水储量下降明显区域的人口暴露度。结果表明:(1) 空间分布上,黄河流域地下水储量西多东少,由西向东下降程度不断加剧,且下降区域呈现由下游向中上游扩散的态势。下降区域主要集中在中东部地区,变化等级以较剧烈减少和剧烈减少为主。(2) 时间变化上,2003—2016年黄河流域地下水储量整体呈下降趋势,年均降幅为5.93 mm·a-1。其中,2004—2016年为连续下降,2015—2016年的下降幅度最大;另外,地下水储量时间变化存在季节效应,地下水储量下降幅度春季最大、冬季次之、秋季再次之、夏季最小。(3) 地下水暴露风险状态下的地级市人口密度在空间上呈东高西低、中部交错分布的状态,暴露风险人口密度最大地级市共16个;地下水储量下降人口累积百分比呈现明显上升的趋势,在2016年达到最大值。研究结果以期为黄河流域地下水资源可持续利用提供科学参考。
邓椿 , 蒋晓辉 , 孙维峰 . 基于GRACE数据的黄河流域地下水储量变化与人口暴露研究[J]. 干旱区地理, 2022 , 45(6) : 1836 -1846 . DOI: 10.12118/j.issn.1000-6060.2022.083
In recent years, the contradiction between humans and water resources in the Yellow River Basin,China has become increasingly prominent, particularly the excessive consumption of groundwater has become one of the main contradictions restricting the harmonious development of humans and nature in this region. Based on GRACE satellite data and GLDAS data, the change in groundwater storage of the Yellow River Basin was calculated from 2003 to 2016, then its temporal and spatial characteristics were explored, and population exposure in areas with significant groundwater decline was identified. The results show the following: (1) In terms of spatial distribution, the groundwater storage of the Yellow River Basin are more in the west and less in the east, the degree of decline from the west to east continues to intensify, and the decline area shows a spreading trend from the lower reaches to the middle and upper reaches. (2) The groundwater storage showed a downward trend in the Yellow River Basin from 2003 to 2016, with an average annual decrease of 5.93 mm·a−1. It is a continuous decline from 2004 to 2016, and the biggest drop occurs in 2015—2016. In addition, there is a seasonal effect on the time change of groundwater storage, groundwater storage declines the most in spring, the second most in winter, the third most in autumn, and the least in summer. (3) Based on the risk of groundwater exposure, the characteristics of population density of prefecture-level cities are high in the east, low in the west, and have a staggered distribution in the middle, and there are 16 prefecture-level cities with the highest population density at risk of exposure. The cumulative percentage of the population with groundwater storage decline exhibited a clear upward trend, reaching a maximum in 2016. The results provide scientific reference for sustainable utilization of groundwater resources in the Yellow River Basin.
[1] | 陶征广, 陶庭叶, 丁鑫, 等. 基于GRACE和GLDAS水文模型反演安徽省地下水储量变化[J]. 地球物理学进展, 2021, 36(4): 1456-1463. |
[1] | [Tao Zhengguang, Tao Tingye, Ding Xin, et al. Groundwater storage changes in Anhui Province derived from GRACE and GLDAS hydrological model[J]. Progress in Geophysics, 2021, 36(4): 1456-1463.] |
[2] | 涂梦昭, 刘志锋, 何春阳, 等. 基于GRACE卫星数据的中国地下水储量监测进展[J]. 地球科学进展, 2020, 35(6): 643-656. |
[2] | [Tu Mengzhao, Liu Zhifeng, He Chunyang, et al. Research progress of groundwater storage changes monitoring in China based on GRACE satellite data[J]. Advances in Earth Science, 2020, 35(6): 643-656.] |
[3] | 赵珍珍, 冯建迪. 基于多源数据的科尔沁沙地陆地水及地下水储量变化研究[J]. 水土保持通报, 2019, 39(3): 119-125, 131. |
[3] | [Zhao Zhenzhen, Feng Jiandi. Investigation of water storage variation in Horqin Sandy Land based on multi-source data[J]. Bulletin of Soil and Water Conservation, 2019, 39(3): 119-125, 131.] |
[4] | Howard K W F. Sustainable cities and the groundwater governance challenge[J]. Environmental Earth Sciences, 2015, 73(6): 2543-2554. |
[5] | 李嘉, 唐河, 饶维龙, 等. 南水北调工程对华北平原水储量变化的影响[J]. 中国科学院大学学报, 2020, 37(6): 775-783. |
[5] | [Li Jia, Tang He, Rao Weilong, et al. Influence of South-to-North Water Transfer Project on the changes of terrestrial water storage in North China Plain[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(6): 775-783.] |
[6] | Long D, Pan Y, Zhou J, et al. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models[J]. Remote Sensing of Environment, 2017(192): 198-216. |
[7] | 许厚泽. 卫星重力研究: 21世纪大地测量研究的新热点[J]. 测绘科学, 2001, 26(3): 1-3. |
[7] | [Xu Houze. Satellite gravity missions: New hotpoint in geodesy[J]. Science of Surveying and Mapping, 2001, 26(3): 1-3.] |
[8] | 陆大道, 孙东琪. 黄河流域的综合治理与可持续发展[J]. 地理学报, 2019, 74(12): 2431-2436. |
[8] | [Lu Dadao, Sun Dongqi. Comprehensive management and sustainable development of the Yellow River Basin[J]. Acta Geographica Sinica, 2019, 74(12): 2431-2436.] |
[9] | 宫辉力, 李小娟, 潘云, 等. 京津冀地下水消耗与区域地面沉降演化规律[J]. 中国科学基金, 2017, 31(1): 72-77. |
[9] | [Gong Huili, Li Xiaojuan, Pan Yun, et al. Groundwater depletion and regional land subsidence of the Beijing-Tianjin-Hebei area[J]. Bulletin of National Natural Science Foundation of China, 2017, 31(1): 72-77.] |
[10] | 杨阳. 关中地区地下水储量时空变化监测与分析[D]. 兰州: 兰州交通大学, 2017. |
[10] | [Yang Yang. Monitoring and analysis of temporal and spatial variation of groundwater reserves in Guanzhong area[D]. Lanzhou: Lanzhou Jiaotong University, 2017.] |
[11] | 胡鹏飞, 李净, 张彦丽, 等. 黄土高原水储量的时空变化及影响因素[J]. 遥感技术与应用, 2019, 34(1): 176-186. |
[11] | [Hu Pengfei, Li Jing, Zhang Yanli, et al. Temporal and spatial variation and influencing factors of water storage on the Loess Plateau[J]. Remote Sensing Technology and Application, 2019, 34(1): 176-186.] |
[12] | 徐子君, 尹立河, 胡伏生, 等. 2002—2015年西北地区陆地水储量时空变化特征[J]. 中国水利水电科学研究院学报, 2018, 16(4): 314-320. |
[12] | [Xu Zijun, Yi Lihe, Hu Fusheng, et al. Spatial and temporal variations of terrestrial water storage in northwest China during 2002—2015[J]. Journal of China Institute of Water Resources and Hydropower Research, 2018, 16(4): 314-320.] |
[13] | 曹艳萍, 南卓铜, 胡兴林. 利用GRACE重力卫星数据反演黑河流域地下水变化[J]. 冰川冻土, 2012, 34(3): 680-689. |
[13] | [Cao Yanping, Nan Zhuotong, Hu Xinglin. Changes of groundwater storage in the Heihe River Basin derived from GRACE gravity satellite data[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 680-689.] |
[14] | Zhong Y, Zhong M, Feng W, et al. Groundwater depletion in the west Liaohe River Basin, China and its implications revealed by GRACE and in situ measurements[J]. Remote Sensing, 2018, 10(4): 493, doi: 10.3390/rs10040493. |
[15] | 张凯莉, 冯荣荣, 刘潭, 等. 黄河流域城市化与生态系统服务价值协调性及障碍因素研究[J]. 干旱区地理, 2022, 45(4): 1254-1267. |
[15] | [Zhang Kaili, Feng Rongrong, Liu Tan, et al. Coordination and obstacle factors of urbanization and ecosystem service value in the Yellow River Basin[J]. Arid Land Geography, 2022, 45(4): 1254-1267.] |
[16] | 袁磊, 韩双宝, 李甫成, 等. 黄河流域灌溉发展演变及对地下水资源的影响[J]. 人民黄河, 2022, 44(4): 80-84. |
[16] | [Yuan Lei, Han Shuangbao, Li Fucheng, et al. Evolution of irrigation development in the Yellow River Basin and its impact on groundwater resources[J]. Yellow River, 2022, 44(4): 80-84.] |
[17] | Tapley B D, Bettadpur S, Ries J C, et al. GRACE measurements of mass variability in the earth system[J]. Science, 2004, 305(5683): 503-505. |
[18] | 张亮林, 潘竟虎. 中国PM2.5人口暴露风险时空格局[J]. 中国环境科学, 2020, 40(1): 1-12. |
[18] | [Zhang Lianglin, Pan Jinghu. Spatial-temporal pattern of population exposure risk to PM2.5 in China[J]. China Environmental Science, 2020, 40(1): 1-12.] |
[19] | 王雪梅, 李新, 马明国. 基于遥感和GIS的人口数据空间化研究进展及案例分析[J]. 遥感技术与应用, 2004, 19(5): 320-327. |
[19] | [Wang Xuemei, Li Xin, Ma Mingguo. Advance and case analysis of population spatial distribution based on remote sensing and GIS[J]. Remote Sensing Technology and Application, 2004, 19(5): 320-327.] |
[20] | Feng W, Zhong M, Lemoine J M, et al. Evaluation of groundwater depletion in north China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements[J]. Water Resources Research, 2013, 49(4): 2110-2118. |
[21] | Sen P K. Estimates of the regressions coefficient based on Kendall’s Tau[J]. Journal of the American Statistical Association, 1968, 63(324): 1379-1389. |
[22] | 黄晓军, 祁明月, 李艳雨, 等. 关中地区PM2.5时空演化及人口暴露风险[J]. 环境科学, 2020, 41(12): 5245-5255. |
[22] | [Huang Xiaojun, Qi Mingyue, Li Yanyu, et al. Spatio-temporal evolution and population exposure risk to PM2.5 in the Guanzhong area[J]. Environmental Science, 2020, 41(12): 5245-5255.] |
[23] | He C, Ma Q, Li T, et al. Spatiotemporal dynamics of electric power consumption in Chinese Mainland from 1995 to 2008 modeled using DMSP/OLS stable nighttime lights data[J]. Journal of Geographical Sciences, 2012, 22(1): 125-136. |
[24] | Zhou F, Bo Y, Ciais P, et al. Deceleration of China’s human water use and its key drivers[J]. Proceedings of the National Academy of Sciences, 2020, 117(14): 7702-7711. |
[25] | 魏士禹, 郭云彤, 崔亚莉, 等. 1985—2016年民勤地下水位及储变量动态特征分析[J]. 干旱区地理, 2021, 44(5): 1272-1280. |
[25] | [Wei Shiyu, Guo Yuntong, Cui Yali, et al. Dynamic characteristics of groundwater level and storage variables in Minqin from 1985 to 2016[J]. Arid Land Geography, 2021, 44(5): 1272-1280.] |
[26] | 冯伟, 王长青, 穆大鹏, 等. 基于GRACE的空间约束方法监测华北平原地下水储量变化[J]. 地球物理学报, 2017, 60(5): 1630-1642. |
[26] | [Feng Wei, Wang Changqing, Mu Dapeng, et al. Groundwater storage variations in the North China Plain from GRACE with spatial constraints[J]. Chinese Journal of Geophysics, 2017, 60(5): 1630-1642.] |
[27] | Yi S, Wang Q, Sun W. Basin mass dynamic changes in China from GRACE based on a multibasin inversion method[J]. Journal of Geophysical Research-Solid Earth, 2016, 121(5): 3782-3803. |
[28] | 李婉秋, 王伟, 章传银, 等. 利用GRACE卫星重力数据监测关中地区地下水储量变化[J]. 地球物理学报, 2018, 61(6): 2237-2245. |
[28] | [Li Wanqiu, Wang Wei, Zhang Chuanyin, et al. Monitoring groundwater storage variations in the Guanzhong area using GRACE satellite gravity data[J]. Chinese Journal of Geophysics, 2018, 61(6): 2237-2245.] |
[29] | 陈永金, 艾克热木·阿布拉, 张天举, 等. 塔里木河下游生态输水对地下水埋深变化的影响[J]. 干旱区地理, 2021, 44(3): 651-658. |
[29] | [Chen Yongjin, Abula Aikeremu, Zhang Tianju, et al. Effects of ecological water conveyance on groundwater depth in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 651-658.] |
[30] | 李杰, 范东明, 游为. 利用GRACE监测中国区域干旱及其影响因素分析[J]. 大地测量与地球动力学, 2019, 39(6): 587-595. |
[30] | [Li Jie, Fan Dongming, You Wei. Using GRACE to monitor regional drought in China and its influencing factors[J]. Journal of Geodesy and Geodynamics, 2019, 39(6): 587-595.] |
[31] | 孙倩, 阿丽亚·拜都热拉. 基于GRACE卫星和GLDAS系统的地下水水位估算模型——以和田地区克里雅河流域为例[J]. 地理科学进展, 2018, 37(7): 50-60. |
[31] | [Sun Qian, Baidourela Aliya. Mathematical fitting of influencing factors and measured groundwater level: Take Keriya River Basin in Hetian area as an example[J]. Advances in Earth Science, 2018, 37(7): 50-60.] |
/
〈 |
|
〉 |