地表过程研究

京藏高速青海东部地区汛期路面水膜厚度变化特征及预报模型构建

  • 代青措 ,
  • 保广裕 ,
  • 祁栋林 ,
  • 李永花 ,
  • 刘佳茹 ,
  • 张静 ,
  • 李宝华
展开
  • 1.青海省防灾减灾重点实验室,青海 西宁 810001
    2.青海省气象服务中心,青海 西宁 810001
    3.青海省气象科学研究所,青海 西宁 810001
代青措(1982-),女,高级工程师,主要从事专业气象预报和服务研究. E-mail: 147463703@qq.com

收稿日期: 2022-03-08

  修回日期: 2022-06-06

  网络出版日期: 2023-02-01

基金资助

青海省创新平台建设专项(2022-ZJ-Y11);青海省基础研究计划项目(2021-ZJ-762);青海省防灾减灾重点实验室开放基金项目(QFZ-2021-M03)

Variation characteristics of pavement water film thickness in flood season and construction of forecast model for Beijing-Tibet Expressway in the eastern part of Qinghai

  • Qingcuo DAI ,
  • Guangyu BAO ,
  • Donglin QI ,
  • Yonghua LI ,
  • Jiaru LIU ,
  • Jing ZHANG ,
  • Baohua LI
Expand
  • 1. Qinghai Key Laboratory of Disaster Prevention and Mitigation, Xining 810001, Qinghai, China
    2. Qinghai Meteorological Service Center, Xining 810001, Qinghai, China
    3. Qinghai Institute of Meteorological Sciences, Xining 810001, Qinghai, China

Received date: 2022-03-08

  Revised date: 2022-06-06

  Online published: 2023-02-01

摘要

利用2018—2020年汛期(5—9月)京藏高速青海省公路沿线交通自动监测站逐小时气象观测资料,研究路面水膜厚度变化特征,构建水膜厚度与气象因子的预报模型。结果表明:(1) 京藏高速公路高庙桥站和汉庄村站逐小时路面水膜厚度主要分布均在0.0~0.2 mm之间,频率分别为66.0%和63.0%,大于0.5 mm以上的路面水膜厚度频率均较小(10.0%),2站均属于强变异性地区。(2) 采用相对阈值法统计分析,发现2站路面水膜厚度在0.1 mm以内的比例分别为33.8%和36.3%,路面水膜厚度在0.1~0.6 mm之间的比例分别为59.2%和56.0%,路面水膜厚度大于0.7 mm以上即易发生水滑,引起车辆失稳、失控等危险的比例分别为7.0%和7.6%。(3) 路面水膜厚度日变化和月变化特征明显。高庙桥站和汉庄村站水膜厚度的月变化均呈弱双峰性,2站的月变化趋势不完全一致。高庙桥站的日变化峰值出现在02:00—06:00,低谷出现在14:00—16:00,汉庄村站日变化峰值出现在06:00,低谷出现在16:00。(4) 随着降水强度的增加,平均水膜厚度均遵循幂函数关系迅速增加;在降水强度0.00~1.75 mm·h-1之间时,平均水膜厚度增加趋势明显,降水强度大于1.76 mm·h-1平均水膜厚度变化有增有减。(5) 采用多元回归统计方法建立依据气象因子和不同降水强度下分别构建的水膜厚度模型具有较好的使用价值,可在实际业务工作中推广应用。(6) 不同降水强度下构建的水膜厚度模型计算值明显高于季天剑模型和罗京模型,本文模型与罗京模型变化趋势较为一致,水膜厚度随降雨强度增加增长趋势明显,季天剑模型水膜厚度计算值随降雨强度增加增长趋势缓慢。研究成果可应用于高原环境雨天车速管理和路面交通安全管理,能够为公路设计人员或运营管理人员提供辅助决策的依据。

本文引用格式

代青措 , 保广裕 , 祁栋林 , 李永花 , 刘佳茹 , 张静 , 李宝华 . 京藏高速青海东部地区汛期路面水膜厚度变化特征及预报模型构建[J]. 干旱区地理, 2022 , 45(6) : 1814 -1823 . DOI: 10.12118/j.issn.1000-6060.2022.088

Abstract

The research uses the hourly measured data from the traffic automatic monitoring station along the Qinghai Provincial Highway of the Beijing-Tibet Expressway during the flood season (May-September) of 2018—2020, study the change feature of the variety of the pavement water film thickness, and finally build the forecast model between the water film thickness and meteorological factors. The results showed that: (1) The hourly pavement water film thickness at Gaomiaoqiao station and Hanzhuangcun station of Beijing-Tibet Expressway was mainly distributed between 0.0 mm and 0.2 mm, and the frequencies were 66.0% and 63.0%, respectively. There would be a small frequency (10.0%) when the pavement water film thickness over 0.5 mm, and both stations belong to strong variability areas. (2) The relative threshold method was used for statistical analysis, and it was found that the proportions of the pavement water film thickness within 0.1 mm at the two stations were 33.8% and 36.3%, respectively. The proportions of the pavement water film thickness between 0.1 mm and 0.6 mm were 59.2% and 56.0%, respectively. When the pavement water film thickness was over 0.7 mm, it is easy to slip, 7.0% and 7.6% of the vehicles were unstable and out of control respectively. (3) The daily and monthly variation characteristics of pavement water film thickness were obvious. The monthly variation of water film thickness at Gaomiaoqiao station and Hanzhuangcun station both showed a weak bimodal character, and the monthly variation trend of the two stations was not completely consistent. The peak of daily variation appeared at 02:00—06:00, and the low point appeared at 14:00—16:00, the peak appeared at 06:00 and the low point appeared at 16:00 at Hanzhuang Village station. (4) With the increase of precipitation intensity, the average water film thickness increased rapidly following the power function; when the precipitation intensity was between 0.00 mm·h-1 and 1.75 mm·h-1, the precipitation intensity was greater than 1.76 mm·h-1, and the average water film thickness increased and decreased. (5) The model of water film thickness based on meteorological factors and different precipitation intensities was established by using multiple regression statistical method, which has good operational value and can be popularized in practical work. (6) The calculated values of the water film thickness model under different precipitation intensities are significantly higher than those of the Ji Tianjian model and the Luo Jing model. The variation trend of the model presented in this article is more consistent with the Luo Jing model, the water film thickness increases obviously with the increase of rainfall intensity, and the calculated value of water film thickness increases slowly with the increase of rainfall intensity.

参考文献

[1] 单成昕. 汽车理论基础[M]. 北京: 人民交通出版社, 1990.
[1] [Shan Chengxin. Fundamentals of automobile theory[M]. Beijing: People’s Communications Press, 1990.]
[2] 罗京, 刘建蓓, 王元庆. 路面水膜深度预测模型验证试验[J]. 中国公路学报, 2015, 28(12): 57-63.
[2] [Luo Jing, Liu Jianbei, Wang Yuanqing. Verification test of water film depth prediction model for pavement[J]. China Journal of Highwayand Transport, 2015, 28(12): 57-63.]
[3] 陈锋平. 道路表面水膜厚度理论计算模型分析[J]. 现代交通技术, 2014, 11(3): 12-15.
[3] [Chen Fengping. Study on the theoretical calculation model of rain water depth on road surface[J]. Modem Transportation Technology, 2014, 11(3): 12-15.]
[4] 季天剑, 黄晓明, 刘清泉, 等. 道路表面水膜厚度预测模型[J]. 交通运输工程学报, 2004, 4(3): 1-3.
[4] [Ji Tianjian, Huang Xiaoming, Liu Qingquan, et al. Prediction model of rain water depth on road surface[J]. Journal of Traffic and Transportation Engineering, 2004, 4(3): 1-3.]
[5] 罗京, 刘建蓓, 戈普塔, 等. 路面水膜厚度检验评价方法[J]. 交通信息与安全, 2016, 34(6): 54-59, 82.
[5] [Luo Jing, Liu Jianbei, Ge Puta, et al. An inspection and evaluation method of thickness of water film on road surface[J]. Journal of Transport Information and Safety, 2016, 34(6): 54-59, 82.]
[6] AnkurMahesh B, Vandana G, Sanjay P, et al. Endodontic management of mandibular first molar with seven canals using cone-beam computed tomography[J]. Contemporary Clinical Dentistry, 2016, 7(2): 255, doi: 10.4103/0976-237X.183055.
[7] 王祎祚, 李光元, 张泽垚, 等. 雨天公路水膜厚度模型验证及行车安全性[J]. 科学技术与工程, 2017, 17(29): 128-132.
[7] [Wang Yizuo, Li Guangyuan, Zhang Zeyao, et al. Verification of water film depth model and highway traffic safety in rain day[J]. Science Technology and Engineering, 2017, 17(29): 128-132.]
[8] 白永清, 何明琼, 刘静, 等. 高速公路交通事故与气象条件的关系研究[J]. 气象与环境科学, 2015, 38(2): 66-71.
[8] [Bai Yongqing, He Mingqiong, Liu Jing, et al. Study on the relationship between highway traffic accidents and meteorological conditions[J]. Meteorological and Environmental Science, 2015, 38(2): 66-71.]
[9] 张晓美, 吕明辉, 王毅, 等. 我国公路交通气象灾害风险隐患特征分析[J]. 灾害学, 2019, 34(4): 19-24.
[9] [Zhang Xiaomei, Lü Minghui, Wang Yi, et al. Analysis on risk characteristics of highway traffic meteorological disasters in China[J]. Journal of Catastrophology, 2019, 34(4): 19-24.]
[10] 保广裕, 杨春华, 周丹, 等. 京藏高速柴达木腹地路面温度变化特征及与气温要素影响分析[J]. 干旱区地理, 2021, 44(5): 1213-1221.
[10] [Bao Guangyu, Yang Chunhua, Zhou Dan, et al. Variation characteristics of road surface temperature and its influence on air temperature factors of Beijing-Tibet expressway in the Qaidam Hinterland[J]. Arid Land Geography, 2021, 44(5): 1213-1221.]
[11] 曾颖婷, 郭伟, 刘京雄. 基于WebGIS技术的精细化高速公路气象服务系统[J]. 气象与环境科学, 2018, 41(3): 132-137.
[11] [Zeng Yingting, Guo Wei, Liu Jingxiong. Precise highway weather service system based on WebGIS technology[J]. Meteorological and Environmental Science, 2018, 41(3): 132-137.]
[12] 张调风, 杨昭明, 温婷婷, 等. 青藏高原东北部区域持续性低温事件的特征及影响因子分析[J]. 干旱区地理, 2021, 44(4): 897-905.
[12] [Zhang Tiaofeng, Yang Zhaoming, Wen Tingting, et al. Characteristics and influencing factors of persistent low temperature events in northeast Qinghai-Tibet Plateau[J]. Arid Land Geography, 2021, 44(4): 897-905.]
[13] 王志, 韩焱红, 李蔼恂. 我国公路交通气象研究与业务进展[J]. 气象科技进展, 2017, 7(1): 85-89.
[13] [Wang Zhi, Han Yanhong, Li Aixun. Advance in research and operation in traffic meteorological service in China[J]. Advances in MeteoroIogical Science and TechnoIogy, 2017, 7(1): 85-89.]
[14] 苗毅, 卢文清, 戴特奇, 等. 青藏高原市域综合交通优势度评价及空间特征——以林芝市为例[J]. 地理科学进展, 2021, 40(8): 1332-1343.
[14] [Miao Yi, Lu Wenqing, Dai Teqi, et al. Comprehensive traffic advantage degree and its spatial characteristics at the prefecture level on the Qinghai-Tibet Plateau: A case study of Linzhi City[J]. Progress in Geography, 2021, 40(8): 1332-1343.]
[15] 宁贵财, 康彩燕, 陈东辉, 等. 2005—2014年我国不利天气条件下交通事故特征分析[J]. 干旱气象, 2016, 34(5): 753-762.
[15] [Ning Guicai, Kang Caiyan, Chen Donghui, et al. Analysis of characteristics of traffic accidents under adverse weather conditions in China during 2005—2014[J]. Journal of Arid Meteorology, 2016, 34(5): 753-762.]
[16] 狄靖月, 王志, 田华, 等. 降水引发的西南地区公路损毁风险预报方法[J]. 应用气象学报, 2015, 26(3): 268-279.
[16] [Di Jingyue, Wang Zhi, Tian Hua, et al. A risk forecast method for southwest road damages based on precipitation[J]. Journal of Applied Meteorological Science, 2015, 26(3): 268-279.]
[17] 李迅, 甘璐, 丁德平, 等. G2京津塘高速公路交通气象安全指数的预报研究[J]. 气象, 2014, 40(4): 466-472.
[17] [Li Xun, Gan Lu, Ding Deping, et al. Research on forecast of traffic weather safety index for Jingjingtang highway (G2)[J]. Meteorological Monthly, 2014, 40(4): 466-472.]
[18] 汤筠筠, 李长城. 基于灰色聚类和层次分析法的汛期公路交通气象灾害后评估方法[J]. 公路, 2011(1): 171-177.
[18] [Tang Junjun, Li Changcheng. Post-evaluation method of highway meteorological disaster in flood seasons based on grey clustering and AHP[J]. Highway, 2011(1): 171-177.]
[19] 武永峰, 张勇, 陈鲜艳, 等. 湖南省公路交通暴雨风险评价研究[J]. 自然灾害学报, 2011, 20(5): 148-154.
[19] [Wu Yongfeng, Zhang Yong, Chen Xianyan, et al. Assessment of rainstorm risk to highway in Hunan Province[J]. Journal of Natural Disasters, 2011, 20(5): 148-154.]
[20] 魏璐. 河南省2011年高速公路气象服务效益评估[J]. 气象与环境科学, 2013, 36(2): 47-51.
[20] [Wei Lu. Benefits assessment of expressway meteorological service in 2011 in Henan Province[J]. Meteorological and Environmental Sciences, 2013, 36(2): 47-51.]
[21] 周存秀. 京藏高速公路诺木洪至格尔木段路域生态环境现状研究[J]. 青海环境, 2011, 21(2): 86-90.
[21] [Zhou Cunxiu. Present state of ecological environment of Nuomuhong to Golmud section of Beijing-Tibet highway[J]. Qinghai Environment, 2011, 21(2): 86-90.]
[22] 计晓龙, 吴昊旻, 黄安宁, 等. 青藏高原夏季降水日变化特征分析[J]. 高原气象, 2017, 36(5): 1188-1200.
[22] [Ji Xiaolong, Wu Haomin, Huang Anning, et al. Characteristics of the precipitation diurnal variation over Qinghai-Tibetan Plateau in summer[J]. Plateau Meteorology, 2017, 36(5): 1188-1200.]
[23] 刘蓉娜, 张国庆, 肖宏斌, 等. 湟水河谷夏季云和降水的日变化特征[J]. 干旱区研究, 2010, 27(1): 135-141.
[23] [Liu Rongna, Zhang Guoqing, Xiao Hongbin, et al. Analysis on the characteristics of daily variation of cloud and precipitation over the Huangshui River valley in summer[J]. Arid Zone Research, 2010, 27(1): 135-141.]
文章导航

/