地表过程研究

台特玛湖干涸湖盆两种典型风蚀坑的三维流场特征及对风蚀的影响

  • 崔珂军 ,
  • 李生宇 ,
  • 王海峰 ,
  • 范敬龙
展开
  • 1.中国科学院新疆生态与地理研究所国家荒漠-绿洲生态建设工程技术研究中心,新疆 乌鲁木齐 830011
    2.中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011
    3.中国科学院新疆生态与地理研究所莫索湾沙漠研究站,新疆 石河子 832000
    4.中国科学院新疆生态与地理研究所塔克拉玛干沙漠研究站,新疆 库尔勒 841000
    5.中国科学院大学,北京 100049
崔珂军(1995-),男,硕士,主要从事干旱区风沙地貌等方面的研究. E-mail: 464509354@qq.com

收稿日期: 2022-02-23

  修回日期: 2022-03-26

  网络出版日期: 2023-02-01

基金资助

“第三次新疆综合科学考察项目”子课题“风沙灾害风险评估与防治区划”(2021xjkk030504)

Three dimensional flow field characteristics of two typical blowout in the dry lake basin of Taitema Lake and their influence on wind erosion

  • Kejun CUI ,
  • Shengyu LI ,
  • Haifeng WANG ,
  • Jinglong FAN
Expand
  • 1. National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    3. Mosuowan Desert Research Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Shihezi 832000, Xinjiang, China
    4. Taklimakan Desert Research Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Korla 841000, Xinjiang, China
    5. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2022-02-23

  Revised date: 2022-03-26

  Online published: 2023-02-01

摘要

台特玛湖干涸湖盆区风蚀沙漠化快速发展,发育了以新月形沙丘和风蚀坑(主要为槽状坑和碟状坑)为主的风沙地貌。风蚀坑的发育不仅受来流风影响,还与坑内三维流场有关。基于风洞实验和计算机流体力学(Computational fluid dynamics, CFD)数值模拟,对风蚀坑三维流场进行了探究。结果表明:(1) 从入风侧到出风侧,槽状风蚀坑和碟状风蚀坑底面的风速均呈减速—加速—减速—加速的变化模式,上口所在水平面的风速变化呈加速—减速—加速变化模式,上口气流压强也相应地发生变化,槽状风蚀坑和碟状风蚀坑整体呈低压—高压—低压变化模式,其中槽状坑变化更为明显。(2) 两种形状风蚀坑对气流均具有一定的吸附效应,使坑外一定范围的风沙流被吸入坑内,聚集能量和风沙流,加剧风蚀坑风蚀发育。(3) 风蚀坑加剧了地表侵蚀,侵蚀程度与风蚀坑尺度有关,风蚀坑尺度越大,对地表侵蚀越强。本文直观展示了两种典型风蚀坑中的三维速度、压力、风沙流流向分布,揭示了风蚀坑的风沙流吸附机制,研究结果可加深对风蚀坑形态动力学的理解,也可为内陆干涸湖盆沙漠化防治提供理论指导。

本文引用格式

崔珂军 , 李生宇 , 王海峰 , 范敬龙 . 台特玛湖干涸湖盆两种典型风蚀坑的三维流场特征及对风蚀的影响[J]. 干旱区地理, 2022 , 45(6) : 1784 -1794 . DOI: 10.12118/j.issn.1000-6060.2022.066

Abstract

Blowouts in the dry lake basin of Taitema Lake, south Xinjiang, China are primarily slotted pits and saucer-shaped pits, and the surface wind erosion is not only influenced by the incoming wind velocity but also strongly influenced by the three-dimensional (3D) flow field in these blowouts. Based on wind tunnel experiments and computational fluid dynamics numerical simulations, the 3D flow field of blowouts is investigated. The following results are found: (1) From the air inlet to the air outlet, the wind speed at the bottom of the grooved and dished blowouts exhibits a change mode of deceleration-acceleration-deceleration-acceleration. The wind speed in the horizontal plane, where the upper mouth is located, exhibits a change mode of acceleration-deceleration-acceleration. The air pressure at the upper mouth also changes spatially accordingly. The overall change mode of the grooved and dished blowouts is low pressure-high pressure-low pressure. The change of trough pit is more obvious. (2) Both blowouts have a certain adsorption effect on wind and sand flow, causing wind and sand flow into the pits, accumulating energy, wind, and sand flow and intensifying wind erosion development. (3) Blowouts intensify surface erosion, and the degree of erosion is related to the scale of the blowout; the larger the scale of the blowout, the stronger the surface erosion. This study visualizes the 3D velocity, pressure, and wind-sand flow distribution patterns in trough-shaped and disc-shaped blowouts and proposes a wind-sand flow adsorption mechanism in these blowouts, the results of which can provide theoretical guidance for inland dry lake basin desertification control.

参考文献

[1] Weng W S, Hunt J, Carruthers D J, et al. Air flow and sand transport over sand-dunes[J]. Acta Mechanica, 1991, 2: 1-22.
[2] Stam J M T. On the modelling of two-dimensional aeolian dunes[J]. Sedimentology, 1997, 44(1): 127-141.
[3] Hesp P A, Hastings K. Width, height and slope relationships and aerodynamic maintenance of barchans[J]. Geomorphology, 1998, 22(2): 193-204.
[4] Wiggs G, Weaver C M. Turbulent flow structures and aeolian sediment transport over a barchan sand dune[J]. Geophysical Research Letters, 2012, 39(5): 1-7.
[5] 蔡东旭, 李生宇, 刘耀中, 等. 台特玛湖干涸湖盆区植物风影沙丘的形态特征[J]. 干旱区地理, 2017, 40(5): 1020-1028.
[5] [Cai Dongxu, Li Shengyu, Liu Yaozhong, et al. Morphological characteristics of shadow dunes of plant at dry lakebed of Taitema Lake[J]. Arid Land Geography, 2017, 40(5): 1020-1028.]
[6] Liu B, Qu J, Zhang W, et al. Numerical simulation of wind flow over transverse and pyramid dunes[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2011, 99(8): 879-888.
[7] Jungerius P D. A simulation model of blowout development[J]. Earth Surface Processes and Landforms, 1984, 9(6): 509-512.
[8] Smyth T A G, Jackson D W T, Cooper J A G. Computational fluid dynamic modelling of three-dimensional airflow over dune blowouts proceedings of the global sand seas[J]. Journal of Coastal Research, 2011, 64: 314-318.
[9] Smyth T A G, Jackson D W T, Cooper J A G. High resolution measured and modelled three-dimensional airflow over a coastal bowl blowout[J]. Geomorphology, 2012, 177-178: 62-73.
[10] 张德平, 王效科, 哈斯, 等. 呼伦贝尔沙质草原风蚀坑研究(1)——形态、分类、研究意义[J]. 中国沙漠, 2006, 26(6): 894-902, 1052-1058.
[10] [Zhang Deping, Wang Xiaoke, Hasi, et al. Hulun Buir sandy grassland blowouts: Geomorphology, classification, and significances[J]. Journal of Desert Research, 2006, 26(6): 894-902, 1052-1058.]
[11] Jungerius P D, Witter J V, Boxel J H. The effects of changing wind regimes on the development of blowouts in the coastal dunes of the Netherlands[J]. Landscape Ecology, 1991, 6(1-2): 41-48.
[12] 刘建辉, 郭占荣, 雷怀彦, 等. 福建长乐东部海岸沙丘风蚀坑研究[J]. 应用海洋学学报, 2008, 27(2): 230-236.
[12] [Liu Jianhui, Guo Zhanrong, Lei Huaiyan, et al. A study on coast dune blowout in the east coast of Changle[J]. Journal of Applied Oceanography, 2008, 27(2): 230-236.]
[13] Jungerius P D, Vandermeulen F. The development of dune blowouts, as measured with erosion pins and sequential air photos[J]. Elsevier, 1989, 16(4-5): 369-376.
[14] 庄燕美, 哈斯. 沙丘风蚀坑的形态及动力过程的研究进展[J]. 干旱区地理, 2005, 28(5): 632-637.
[14] [Zhuang Yanmei, Hasi. Research of the study on shapes and dynamical process of blowouts on dunes[J]. Arid Land Geography, 2005, 28(5): 632-637.]
[15] 贾丹阳, 熊祯祯, 高岩, 等. 近30 a台特玛湖地区土地利用/土地覆被变化及其影响因素[J]. 干旱区地理, 2021, 44(4): 1022-1031.
[15] [Jia Danyang, Xiong Zhenzhen, Gao Yan, et al. Land use/land cover change and influencing factors in Taitema Lake area in past 30 years[J]. Arid Land Geography, 2021, 44(4): 1022-1031.]
[16] 任宏晶. 台特玛湖干涸湖盆区沉积物含盐量对风蚀影响的风洞模拟研究[D]. 北京: 中国科学院大学, 2019.
[16] [Ren Hongjing. Wind tunnel simulation of the effect of sediment salt content on wind erosion in the dry lake basin of Taitema Lake[D]. Beijing: University of Chinese Academy of Sciences, 2019.]
[17] 刘晏良, 焦广辉, 戴健, 等. 塔里木河流域生态环境系统演变与治理对策研究[C]// 新疆发展和改革委员会, 中国新疆维吾尔自治区: 出版者不详, 2000.
[17] [Liu Yanliang, Jiao Guanghui, Dai Jian, et al. Study on the evolution of ecological environment system and control countermeasures in Tarim River Basin[C]// Xinjiang Development and Reform Commission, Xinjiang Uygur Autonomous Region, China: Publisher unknown, 2000.]
[18] 王帅, 哈斯. 沙质草原槽形风蚀坑表面沉积物粒度特征[J]. 水土保持通报, 2008, 28(6): 122-125.
[18] [Wang Shuai, Hasi. Particle size variation in trough blowout on sandy grassland[J]. Bulletin of Soil and Water Conservation, 2008, 28(6): 122-125.]
[19] 张惜伟. 典型沙质草原风蚀坑演化过程与发育机理研究[D]. 呼和浩特: 内蒙古农业大学, 2018.
[19] [Zhang Xiwei. Study on evolution process and development mechanism of wind erosion pits in typical sandy grassland[D]. Hohhot: Inner Mongolia Agricultural University, 2018.]
[20] 董周宾, 颜丹平, 张自力, 等. 基于粒子图像测速系统(PIV)的砂箱模拟实验方法研究与实例分析[J]. 现代地质, 2014, 28(2): 321-330.
[20] [Dong Zhoubin, Yan Danping, Zhang Zili, et al. Research on methods of sandbox modeling and case study based on particle image velocimetry(PIV)[J]. Geoscience, 2014, 28(2): 321-330.]
[21] 陈柏羽, 程建军, 李生宇. 新疆S214省道高立式芦苇沙障合理间距分析[J]. 干旱区研究, 2020, 37(3): 782-789.
[21] [Chen Boyu, Cheng Jianjun, Li Shengyu. Reasonable spacing of high-parallel reed sand barriers along the Xinjiang S214 provincial highway[J]. Arid Zone Research, 2020, 37(3): 782-789.]
[22] 王帅, 哈斯. 呼伦贝尔沙质草原槽形风蚀坑表面气流特征[J]. 中国水土保持科学, 2009, 7(2): 80-85.
[22] [Wang Shuai, Hasi. Air flow dynamics of the blowout trough in the Hulun Buir sandy grassland[J]. Science of Soil and Water Conservation, 2009, 7(2): 80-85.]
[23] 孙禹, 杜会石, 哈斯, 等. 固定沙丘风蚀坑风沙动力学观测研究[J]. 地理学报, 2016, 71(9): 1562-1570.
[23] [Sun Yu, Du Huishi Hasi, et al. Aeolian dynamical process of blowout on the fixed dune[J]. Acta Geographica Sinica, 2016, 71(9): 1562-1570.]
[24] Ferguson, Victoria, Gellasch, et al. Windflow circulation patterns in a coastal dune blowout, south coast of Lake Michigan[J]. Journal of Coastal Research, 1998, 14(2): 451-462.
[25] 吴正. 风沙地貌学[M]. 北京: 科学出版社, 1987.
[25] [Wu Zheng. Aeolian geomorphology[M]. Beijing: Science Press, 1987.]
[26] Hesp P. Foredunes and blowouts: Initiation, geomorphology and dynamics[J]. Geomorphology, 2002, 48(1): 245-268.
[27] 张德平, 孙宏伟, 王效科, 等. 呼伦贝尔沙质草原风蚀坑研究(Ⅱ): 发育过程[J]. 中国沙漠, 2007, 27(1): 20-24, 170-171.
[27] [Zhang Deping, Sun Hongwei, Wang Xiaoke, et al. Hulun Buir sandy grassland blowouts(Ⅱ): Process of development and landscape evolution[J]. Journal of Desert Research, 2007, 27(1): 20-24, 170-171.]
[28] Cai D X, Li S Y, Gao X, et al. Wind tunnel simulation of the aeolian erosion on the leeward side of barchan dunes and its implications for the spatial distribution patterns of barchan dunes[J]. Catena, 2021, 207(105583): 1-12.
[29] 林永崇, 穆桂金, 秦小光, 等. 新疆楼兰地区雅丹地貌差异性侵蚀特征[J]. 中国沙漠, 2017, 37(1): 33-39.
[29] [Lin Yongchong, Mu Guijin, Qin Xiaoguang, et al. Erosion characteristics of Yardangs at Loulan area, Xinjiang, China[J]. Journal of Desert Research, 2017, 37(1): 33-39.]
[30] 阎旭, 张德平, 夏显东, 等. 呼伦贝尔沙质草原风蚀坑形态发育模式分析[J]. 中国沙漠, 2009, 29(2): 212-218.
[30] [Yan Xu, Zhang Deping, Xia Xiandong, et al. Morphology and developmental mode of blowouts in Hulun Buir sandy grassland, China[J]. Journal of Desert Research, 2009, 29(2): 212-218.]
文章导航

/