收稿日期: 2022-02-12
修回日期: 2022-04-21
网络出版日期: 2023-02-01
基金资助
安徽省哲学社会科学规划项目(AHSKQ2021D213);安徽省高校科学研究项目重点项目(SK2020A0311);安徽省高校科学研究项目重点项目(SK2021A0416);阜阳师范大学青年人才基金重点项目(rcxm201907)
Mineralogical characteristics and its significance of late Pleistocene sediments in the Badain Jaran Desert
Received date: 2022-02-12
Revised date: 2022-04-21
Online published: 2023-02-01
巴丹吉林沙漠是研究亚洲内陆干旱化等古环境问题的重要窗口。以沙漠东南缘巴润宝日陶勒盖剖面为研究对象,通过详细的薄片矿物学、X射线衍射半定量及粒度等方法指标,综合分析沉积物的结构成熟度和成分成熟度等矿物学特征,恢复该地区在晚更新世沉积环境变化。结果表明:(1) 66.8 ka之前沉积的矿物碎屑分选性好、磨圆较好,稳定矿物含量高;66.8 ka之后,矿物分选性差、磨圆差,稳定矿物含量均下降,粘土矿物增加。(2) 66.8 ka之前沉积物以中砂为主,66.8 ka之后以细砂为主。研究表明巴丹吉林沙漠东南缘66.8 ka前后存在一次沉积环境突变,由风沙沉积转变为湖相沉积,可能代表了一次典型的东亚夏季风增强事件,推测与低纬西太平洋温度升高相关。对于巴丹吉林沙漠东南缘沉积物矿物学的相关认知有助于理解沙漠中沉积环境的转换过程及其驱动因子,并为重建沙漠千年尺度的古环境与古气候演变提供数据参考。
张新毅 , 范小露 , 田明中 . 巴丹吉林沙漠晚更新世沉积物矿物学特征及其指示意义[J]. 干旱区地理, 2022 , 45(6) : 1773 -1783 . DOI: 10.12118/j.issn.1000-6060.2022.051
The Badain Jaran Desert, Inner Mongolia, China is an important window to study the aridity and other paleoenvironmental problems in Asia. Taking the Barunbori Tolgoi section in the southeastern margin of the desert as the research object, mineralogical characteristics of sediments, such as structural and compositional maturity, were thoroughly analyzed. Through detailed sample mineralogy under a microscope, semi-quantitative X-ray diffraction (XRD) test, and grain size analysis, the sedimentary environment in this area during the late Pleistocene was reconstructed. Microscopic characteristics of sediments indicate that the mineral debris deposited before 66.8 ka had good sorting, high roundness, and high stable mineral contents, indicating high structural and compositional maturity. After 66.8 ka, the mineral debris exhibited poor sorting, low roundness, and low stable mineral contents, whereas the number of clay minerals increased, indicating lower structural and compositional maturity. The XRD results show that the sediments before 66.8 ka were dominated by felsic minerals with a percentage of 95%-100%. After 66.8 ka, the number of clay minerals gradually increased, indicating that the environment was relatively warm and humid. The appearance of carbonate and evaporite minerals in the later period indicated that the lake water developed toward the direction of salinity. The grain size analysis results show that the sediments before 66.8 ka are dominated by medium sand, with an average content of 65.33%. After 66.8 ka, the sand becomes fine, with the content ranging from 56.32% to 61.51%. The mineral-sorting coefficient corresponding to the standard deviation of grain size data shows that the sorting coefficient of the sediments before 66.8 ka is 0.40-0.67, indicating good sorting. After 66.8 ka, the sediment-sorting coefficients ranged from 0.55 to 1.03, indicating poor sorting. The results show that there was a sudden sedimentary environment change from aeolian sediments to lacustrine sediments around 66.8 ka in the southeastern margin of the Badain Jaran Desert, indicating a significant increase in the lake area and water level. According to the macroscopic geomorphological characteristics and measured data in the field, the elevation of the two salt lakes on the west side of the Barunbori Tolgoi section is approximately 1275 m, whereas the elevation of the platform on the top of the section is 1294 m, which means that the water level rose at least 19 m during this period. The lacustrine platform was gradually deposited on the underlying dunes during the long lake period. The sedimentary environment change may represent a typical East Asian summer monsoon intensification event, which is speculated to be related to the warming of the low-latitude western Pacific Ocean.
[1] | Chen F H, Yu Z C, Yang M L, et al. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3-4): 351-364. |
[2] | Chen J H, Chen F H, Feng S, et al. Hydroclimatic changes in China and surroundings during the medieval climate anomaly and little ice age: Spatial patterns and possible mechanisms[J]. Quaternary Science Reviews, 2015, 107: 98-111. |
[3] | 肖南, 董治宝, 刘铮瑶, 等. 巴丹吉林沙漠及其高大沙山研究评述[J]. 地理研究, 2021, 40(7): 1887-1901. |
[3] | [Xiao Nan, Dong Zhibao, Liu Zhengyao, et al. A review of the Badain Jaran Sand Sea and its megadune[J]. Geographical Research, 2021, 40(7): 1887-1901.] |
[4] | 陈天源. 基于光释光年代学的巴丹吉林沙漠高大沙山-湖泊环境形成及演化研究[D]. 西宁: 中国科学院青海盐湖研究所, 2019. |
[4] | [Chen Tianyuan. Study on the formation and evolution of the megadune-lake environment in Badain Jaran Desert based on luminecence chronology[D]. Xining: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2019.] |
[5] | 崔徐甲, 孙虎, 董治宝, 等. 巴丹吉林沙漠高大沙山沉积物地球化学元素组成及其环境意义[J]. 中国沙漠, 2017, 37(1): 17-25. |
[5] | [Cui Xujia, Sun Hu, Dong Zhibao, et al. Geochemical elements compositon of sediments for megadunes and its environment significance in the Badain Jaran Sand Sea[J]. Journal of Desert Research, 2017, 37(1): 17-25.] |
[6] | Liu S W, Lai Z P, Wang Y X, et al. Growing pattern of mega-dunes in the Badain Jaran Desert in China revealed by luminescence ages[J]. Quaternary International, 2016, 410: 111-118. |
[7] | 闫满存, 王光谦, 李保生, 等. 巴丹吉林沙漠更新世古风向变化及环境意义[J]. 清华大学学报(自然科学版), 2001, 41(11): 118-122. |
[7] | [Yan Mancun, Wang Guangqian, Li Baosheng, et al. Pleistocene paleowind direction change in the Badain Jaran Desert and its environmental significance[J]. Journal of Tsinghua University (Science and Technology Edition), 2001, 41(11): 118-122.] |
[8] | 余莺潇, 王乃昂, 隆浩, 等. 巴丹吉林沙漠东南缘砂楔年代及其环境意义[J]. 科学通报, 2017, 62(30): 3461-3469. |
[8] | [Yu Yingxiao, Wang Nai’ang, Long Hao, et al. The age of sand wedges and its environmental significance at the southeast edge of Badain Jaran Desert[J]. Chinese Science Billetin, 2017, 62(30): 3461-3469.] |
[9] | 伏梦璇, 于世永, 吴金甲, 等. 巴丹吉林沙漠南缘高台盐湖记录的中晚全新世气候变化[J]. 海洋地质与第四纪地质, 2020, 40(4): 192-203. |
[9] | [Fu Mengxuan, Yu Shiyong, Wu Jinjia, et al. Mid-to-late Holocene climate changes on the southern margin of the Badain Jaran Desert: Evidence from the Gaotai Lake sediments[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 192-203.] |
[10] | 李卓仑, 马素辉, 王乃昂, 等. 巴丹吉林沙漠盐湖面积变化对湖泊边缘表层沉积物盐类矿物组合影响[J]. 盐湖研究, 2015, 23(4): 8-14. |
[10] | [Li Zhuolun, Ma Suhui, Wang Nai’ang, et al. Impacts of salt lakes area changes in Badain Jaran Desert on saline minerals assemblages[J]. Journal of Salt Lake Research, 2015, 23(4): 8-14.] |
[11] | 姜高磊, 聂振龙, 刘哲, 等. 巴丹吉林沙漠南缘冲洪积物的光释光年代及其水文学意义[J]. 地球科学, 2021, 46(5): 1829-1839. |
[11] | [Jiang Gaolei, Nie Zhenlong, Liu Zhe, et al. OSL ages and its hydrological implications of alluvial-diluvial deposits from the southern margin of Badain Jaran Desert[J]. Earth Science, 2021, 46(5): 1829-1839.] |
[12] | 刘铮瑶, 董治宝, 萨日娜, 等. 巴丹吉林沙漠边缘沉积物粒度和微形态特征空间分异[J]. 中国沙漠, 2018, 38(5): 945-953. |
[12] | [Liu Zhengyao, Dong Zhibao, Sa Rina, et al. Grain size and micro-morphology characteristics of the surface sediments in the marginal area of the Badan Jaran Desert[J]. Journal of Desert Research, 2018, 38(5): 945-953.] |
[13] | 付旭东. 巴丹吉林沙漠石英δ18O值及其物源意义[J]. 沉积学报, 2017, 35(1): 67-74. |
[13] | [Fu Xudong. Characteristics of oxygen isotopic compositions of quartz in the Badain Jaran Desert and its implications for sand provenances[J]. Acta Sedimentologica Sinica, 2017, 35(1): 67-74.] |
[14] | 曹乐, 刘敏. 巴丹吉林沙漠车日格勒钙华测年及其地质意义[J]. 科技风, 2017(7): 151-152. |
[14] | [Cao Le, Liu Min. Dating of Cherigele travertine in Badain Jaran Desert and its geological significance[J]. Technology Wind, 2017(7): 151-152.] |
[15] | 杨艺, 李保生, 李云卓, 等. 巴丹吉林沙漠查格勒布剖面微量元素反映的150 ka BP以来的气候变化[J]. 中国沙漠, 2007, 27(1): 1-8. |
[15] | [Yang Yi, Li Baosheng, Li Yunzhuo, et al. Palaeo-climate change indicated from fluctuations of trace elements since 150 ka BP in Chagelebu stratigraphical section, Badain Jaran Desert[J]. Journal of Desert Research, 2007, 27(1): 1-8.] |
[16] | 高全洲, 陶贞, 董光荣. 微量元素记录的化学风化和气候变化——以巴丹吉林沙漠查格勒布鲁剖面为例[J]. 中国沙漠, 2001, 21(4): 59-64. |
[16] | [Gao Quanzhou, Tao Zhen, Dong Guangrong. Chemical weathering and climatic changes recorded by the trace elements in Chagelebulu section, Badain Jaran Desert, China[J]. Journal of Desert Research, 2001, 21(4): 59-64.] |
[17] | 刘子亭, 杨小平, 朱秉启. 巴丹吉林沙漠全新世环境记录的年代校正与古气候重建[J]. 第四纪研究, 2010, 30(5): 925-933. |
[17] | [Liu Ziting, Yang Xiaoping, Zhu Bingqi. Reinterpretation of the chronological data of palaeo-environmental records in the Badain Jaran Desert and reconstruction of the Holocene climatic changes[J]. Quaternary Sciences, 2010, 30(5): 925-933.] |
[18] | 王丰年, 李保生, 蒋树萍, 等. 查格勒布鲁剖面记录的OIS3a巴丹吉林沙漠季风气候变化[J]. 干旱区资源与环境, 2017, 31(6): 97-102. |
[18] | [Wang Fengnian, Li Baosheng, Jiang Shuping, et al. Monsoonal climate changes from the Chagelebulu section of the Badain Jaran Desert in China during the OIS3a[J]. Journal of Arid Land Resources and Environment, 2017, 31(6): 97-102.] |
[19] | Fan X L, Zhang X Y, Tian M Z. Climate change during the last glacial period on the southeast margin of Badain Jaran Desert, northwest China[J]. Journal of Mountain Science, 2019, 16(10): 2379-2388. |
[20] | 范小露, 张新毅, 田明中. 巴丹吉林沙漠东南缘末次冰期沉积物地球化学特征及气候指示意义[J]. 干旱区地理, 2021, 44(2): 409-417. |
[20] | [Fan Xiaolu, Zhang Xinyi, Tian Mingzhong. Geochemical characteristics and paleoclimatic significance of the last glacial sediments in the southeastern margin of Badain Jaran Desert[J]. Arid Land Geography, 2021, 44(2): 409-417.] |
[21] | 林培英. 晶体光学与造岩矿物[M]. 北京: 地质出版社, 2005: 125-168. |
[21] | [Lin Peiying. Crystal optics and rock forming minerals[M]. Beijing: Geological Press, 2005: 125-168.] |
[22] | 黄继武, 李周. 多晶材料X射线衍射: 实验原理、方法与应用[M]. 北京: 冶金工业出版社, 2012: 1-117. |
[22] | [Huang Jiwu, Li Zhou. Experimental principles, methods and applications of X-ray diffraction for polycrystalline materials[M]. Beijing: Metallurgical Industry Press, 2012: 1-117.] |
[23] | Zhao H, Li G, Sheng Y, et al. Early-middle Holocene lake-desert evolution in northern Ulan Buh Desert, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 331: 31-38. |
[24] | 朱大岗, 孟宪刚, 赵希涛, 等. 西藏纳木错晚更新世以来湖面变化和湖相沉积中粘土矿物显示的环境信息[J]. 地质力学学报, 2004, 10(4): 300-309. |
[24] | [Zhu Dagang, Meng Xian’gang, Zhao Xitao, et al. Lake-level change of Nam Co, Tibet, since the late Pleistocene and environment information of clay minerals in lacustrine deposits[J]. Journal of Geomechanics, 2004, 10(4): 300-309.] |
[25] | 张雪飞, 郑绵平. 青藏高原扎布耶盐湖SZK01孔粘土矿物X射线粉晶衍射分析[J]. 光谱学与光谱分析, 2014, 34(11): 3119-3122. |
[25] | [Zhang Xuefei, Zheng Mianping. X-ray powder diffraction of clay minerals of SZK01 core of Zabuye Lake, Tibetan Plateau[J]. Spectroscopy and Spectral Analysis, 2014, 34(11): 3119-3122.] |
[26] | 贾宛娜. 吉兰泰盐湖34 ka以来的古气候与古环境[D]. 兰州: 兰州大学, 2015. |
[26] | [Jia Wanna. Palaeoclimatic and palaeoenvironmental evolution of Jilantai Salt Lake over the past 34 ka[D]. Lanzhou: Lanzhou University, 2015.] |
[27] | 常宏, 左合君, 王海兵, 等. 黄河乌兰布和沙漠段两岸地表沉积物多重分形特征及其指示意义[J]. 干旱区研究, 2019, 36(6): 1559-1567. |
[27] | [Chang Hong, Zuo Hejun, Wang Haibing, et al. Multi-fractal features and their significances of surface sediments along both banks of the Yellow River reach in the Ulanbuh Desert[J]. Arid Zone Research, 2019, 36(6): 1559-1567.] |
[28] | 张惜伟, 汪季, 高永, 等. 呼伦贝尔沙质草原风蚀坑表层土壤粒度特征[J]. 干旱区研究, 2017, 34(2): 293-299. |
[28] | [Zhang Xiwei, Wang Ji, Gao Yong, et al. Grain size characteristics of topsoil in blowouts on sandy grasslands in Hulun Buir[J]. Arid Zone Research, 2017, 34(2): 293-299.] |
[29] | 曹广超, 马海州, 隆浩, 等. 柴达木盆地东部尕海湖DG03孔岩芯粒度特征及环境意义[J]. 中国沙漠, 2008, 28(6): 1073-1077. |
[29] | [Cao Guangchao, Ma Haizhou, Long Hao, et al. Particle size characteristics of deposits from DG03 core of Gahai Lake in east of Qaidam Basin and their environmental significance[J]. Journal of Desert Research, 2008, 28(6): 1073-1077.] |
[30] | 隆浩, 王乃昂, 李育, 等. 毛乌素沙地北缘泊江海子剖面粒度特征及环境意义[J]. 中国沙漠, 2007, 27(2): 187-193. |
[30] | [Long Hao, Wang Nai’ang, Li Yu, et al. Particle size characteristics of deposits from PJHZ section in northern edge of Mu Us Desert and their environmental significance[J]. Journal of Desert Research, 2007, 27(2): 187-193.] |
[31] | Zhang X, Zhou A, Zhang C, et al. High-resolution records of climate change in arid eastern Central Asia during MIS 3 (51600-25300 cal a BP) from Wulungu Lake, north-western China[J]. Journal of Quaternary Science, 2016, 31(6): 577-586. |
[32] | 李开封, 穆桂金, 徐立帅, 等. 塔里木河干流古河道表层沉积物粒度特征及其意义[J]. 水土保持通报, 2012, 32(1): 161-164. |
[32] | [Li Kaifeng, Mu Guijin, Xu Lishuai, et al. Grain size characteristics and their significance for surface sediment of paleochannels along main stream of Tarim River[J]. Bulletin of Soil and Water Conservation, 2012, 32(1): 161-164.] |
[33] | 殷志强, 秦小光, 吴金水, 等. 中国北方部分地区黄土、沙漠沙、湖泊、河流细粒沉积物粒度多组分分布特征研究[J]. 沉积学报, 2009, 27(2): 343-351. |
[33] | [Yin Zhiqiang, Qin Xiaoguang, Wu Jinshui, et al. The multimodal grain-size distribution characteristics of loess, desert, lake and river sediments in some areas of northern China[J]. Acta Sedimentologica Sinica, 2009, 27(2): 343-351.] |
[34] | 贺振杰, 马龙, 吉力力·阿不都外力, 等. 哈萨克斯坦巴尔喀什湖沉积物粒度特征及其对区域环境变化的响应[J]. 干旱区地理, 2021, 44(5): 1317-1327. |
[34] | [He Zhenjie, Ma Long, Abudouwaili Jilili, et al. Grain-size characteristics of lacustrine sediments in Balkhash Lake, Kazakhstan and its response to regional environmental changes[J]. Arid Land Geography, 2021, 44(5): 1317-1327.] |
[35] | 朱秉启. 中纬度荒漠区河西走廊沙丘地貌的演化特征及其环境指示[J]. 地理学报, 2021, 76(11): 2710-2729. |
[35] | [Zhu Bingqi. The recent evolution of dune landforms and its environmental indications in the mid-latitude desert area (Hexi Corridor)[J]. Acta Geographica Sinica, 2021, 76(11): 2710-2729.] |
[36] | Wang N A, Ning K, Li Z L, et al. Holocene high lake-levels and pan-lake period on Badain Jaran Desert[J]. Science China Earth Sciences, 2016, 59(8): 1633-1641. |
[37] | Zhang Z C, Dong Z B, Li C X. Wind regime and sand transport in China’s Badain Jaran Desert[J]. Aeolian Research, 2015(17): 1-13. |
[38] | 李保生, 高全洲, 阎满存, 等. 150 ka BP以来巴丹吉林沙漠东南区域地层序列的新研究[J]. 中国沙漠, 2005, 25(4): 457-465. |
[38] | [Li Baosheng, Gao Quanzhou, Yan Mancun, et al. A recent study on sedimentary sequence of southeastern Badain Jaran Desert since 150 ka BP[J]. Journal of Desert Research, 2005, 25(4): 457-465.] |
[39] | 丁仲礼. 中国西部环境演化集成研究[M]. 北京: 气象出版社, 2010: 95-107. |
[39] | [Ding Zhongli. Integrated study on environmental evolution in western China[M]. Beijing: Meteorological Press, 2010: 95-107.] |
[40] | Berger A. Long-term variations of caloric insolation resulting from the Earth’s orbital elements[J]. Quaternary Research, 1978, 9(2): 139-167. |
[41] | Matsumoto K. Radiocarbon-based circulation age of the world oceans[J]. Journal of Geophysical Research, 2007, 112(C9): C09004, doi: 10.1029/2007jc004095. |
[42] | 王春红, 蒋全荣, 余志豪. 北极III区海冰面积低频变化对北半球冬季大气环流异常的作用[J]. 大气科学, 1997, 21(1): 124-127. |
[42] | [Wang Chunhong, Jiang Quanrong, Yu Zhihao. Effect of the low-frequency variability of the region III Arctic Sea ice cover upon the Northern Hemisphere atmosphere general circulation anomaly in winter[J]. Scientia Atmospherica Sinica, 1997, 21(1): 124-127.] |
/
〈 |
|
〉 |