气候与水文

可可西里土壤凝结水形成特征及其影响因素研究

  • 石万鹏 ,
  • 李备 ,
  • 刘景涛 ,
  • 卓子钧 ,
  • 陈玺
展开
  • 1.中国地质科学院水文地质环境地质研究所,河北 石家庄 050061
    2.中国地质大学(北京),北京 100083
    3.河北省地下水污染机理与修复重点实验室,河北 石家庄 050061
石万鹏(1998-),男,硕士研究生,主要从事水循环与水质演替等方面研究. E-mail: wanpeng0910@163.com

收稿日期: 2022-03-08

  修回日期: 2022-04-06

  网络出版日期: 2023-02-01

基金资助

中国地质科学院水文地质环境地质研究所基本科研费(SK202116);中国地质调查局湟水河流域水文地质调查(DD20190331);河北省青年科学基金(D2021504003)

Formation characteristics and factors effecting of condensation waterin surface soil in Hoh Xil area

  • Wanpeng SHI ,
  • Bei LI ,
  • Jingtao LIU ,
  • Zijun ZHUO ,
  • Xi CHEN
Expand
  • 1. Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, Hebei, China
    2. China University of Geosciences, Beijing 100083, China
    3. Key Laboratory of Groundwater Contamination and Remediation, Hebei Province, Shijiazhuang 050061, Hebei, China

Received date: 2022-03-08

  Revised date: 2022-04-06

  Online published: 2023-02-01

摘要

青藏高原受气候变化影响,干湿过渡状况不断扩大,凝结水是旱区重要的水分补给来源,研究凝结水对青藏高原生态具有重要意义。为探究凝结水在青藏高原的形成特征以及影响凝结水形成因素,选取近年来受气候影响较大的可可西里盐湖地区作为研究区,使用微型蒸渗仪探究其0~10 cm土壤水分蒸发凝结特征,并利用相关回归分析、主成分分析探究影响凝结水形成因素。结果表明:(1) 在14:00—次日14:00期间,气温和土层温度均呈现出先减小后增大的变化趋势,0~10 cm土壤在00:00—10:00内有明显土壤凝结水形成,而在其余时间水量蒸发明显。大气水汽和土壤深层水汽组成土壤凝结水的比例约为1:3。当夜间近地空气相对湿度大于64%,近地气温小于3.8 ℃,5 cm土层温度低于4.1 ℃,有利于土壤凝结水的形成,平均水量可达0.2 mm·d-1。(2) 相关分析表明土壤总凝结水量与5 cm土层温度和5~30 cm土层温度差呈显著负相关,而且凝结水量与相关因子的线性拟合效果较好;大气水汽凝结水量与气温呈现显著负相关,与相对湿度呈现显著正相关。主成分分析结果显示0~10 cm以上土层微气象因子对凝结水形成因素较大。

本文引用格式

石万鹏 , 李备 , 刘景涛 , 卓子钧 , 陈玺 . 可可西里土壤凝结水形成特征及其影响因素研究[J]. 干旱区地理, 2022 , 45(6) : 1729 -1739 . DOI: 10.12118/j.issn.1000-6060.2022.090

Abstract

Caused by climate change, the Qinghai-Tibet Plateau has continuously expanded the transition between dry and wet conditions, and the phenomenon of ecological degradation has increased. Condensation water is an important water resource in arid regions. In order to explore the formation characteristics and influencing factors of condensation water on the Qinghai-Tibet Plateau, this study selected Yanhu (Salt lake) district at the Hoh Xil area that has been greatly affected by climate in recent years, micro lysimeters were used to weigh the 0-10 cm soil to explore the evaporation and condensation characteristics of surface soil moisture. Besides, used multivariate statistical methods to analyze the relationship between condensation water and micro-meteorological factors, such as one-way analysis of variance, correlation analysis and principal component analysis. The results showed that: (1) During the period from 14:00 to 14:00 the next day, both the air temperature and the soil layer temperature showed a trend of first decreasing and then increasing. The 0-10 cm soil had obvious soil condensate formation from 00:00 to 10:00, but the soil water evaporated significantly in the other period. The soil condensation water was mainly composed of atmospheric water vapor and deep soil water vapor, with a ratio of about 1:3. We found that the conditions for the occurrence of soil condensation water were as follows: the relative humidity of the air at night was greater than 64%, the air temperature was less than 3.8 ℃, and the temperature of the 5 cm soil layer was less than 4.1 ℃, it was conducive to the formation of condensation water, and the average water volume could reach 0.2 mm·d-1. (2) Correlation analysis showed that the total amount of soil condensed water was significantly negatively correlated with the temperature of the 5 cm soil layer and the soil temperature difference between 5 cm and 30 cm, and the linear regression effect between the amount of condensation water and related factors was good; There was a significant negative correlation between the amount and air temperature, and a significant positive correlation with relative humidity. The results of principal component analysis showed that the amount of condensation water was closely related to micro-meteorological factors, especially the micro-meteorological factors above 10 cm soil layer. This research could provide a certain scientific basis for the reasonable estimation of ecological water volume and vegetation restoration in the Yanhu district.

参考文献

[1] 潘颜霞, 王新平, 张亚峰, 等. 沙坡头地区地形对凝结水形成特征的影响[J]. 中国沙漠, 2014, 34(1): 118-124.
[1] [Pan Yanxia, Wang Xinping, Zhang Yafeng, et al. Influence of topography on formation characteristics of hygroscopic and condensation water in Shapotou, Ningxia, China[J]. Journal of Desert Research, 2014, 34(1): 118-124.]
[2] Yu R, Zhang Z, Lu X, et al. Variations in dew moisture regimes in desert ecosystems and their influencing factors[J]. Wires Water, 2020, 7(6): 1-25.
[3] Jia Z F, Ma Y D, Liu P, et al. Relationship between sand dew and plant leaf dew and its significance in irrigation water supplementation in Guanzhong Basin, China[J]. Environment Earth Sciences, 2019, 78(12): 354, doi: 10.1007/s12665-019-8345-6.
[4] 郭占荣, 刘花台. 西北地区凝结水及其生态环境意义[J]. 地球学报, 1999, 20(增刊1): 772-776.
[4] [Guo Zhanrong, Liu Huatai. Condensation water and its ecological environment effect in northwestern of China[J]. Acta Geoscientica Sinica, 1999, 20(Suppl. 1): 772-776.]
[5] Kaseke K F, Wang L X. Fog and dew as potable water resources maximizing[J]. Geohealth, 2018, 2(10): 327-332.
[6] 王忠静, 张子雄, 索滢. 干旱区凝结水评估及对水量平衡方程影响[J]. 水利学报, 2019, 50(6): 710-720.
[6] [Wang Zhongjing, Zhang Zixiong, Suo Ying. A new water balance equation introducing dew amount in arid area[J]. Journal of Hydraulic Engineering, 2019, 50(6): 710-720.]
[7] Hao X, Li C, Guo B, et al. Dew formation and its long-term trend in a desert riparian forest ecosystem on the eastern edge of the Taklimakan Desert in China[J]. Journal of Hydrology, 2012, 472-473: 90-98.
[8] Kidron G J. Altitude dependent dew and fog in the Negev Desert[J]. Agricultural and Forest Meteorology, 1999, 96: 1-8.
[9] Agam N, Berliner P R. Dew formation and water vapor adsorption in semi-arid environments: A review[J]. Journal of Arid Environments, 2006, 65(4): 572-590.
[10] 郭占荣, 韩双平. 西北干旱地区凝结水试验研究[J]. 水科学进展, 2002, 13(5): 623-628.
[10] [Guo Zhanrong, Han Shuangping. Experimental study on the condensation water in arid area, northwestern China[J]. Advances in Water Science, 2002, 13(5): 623-628.]
[11] 鲁笑瑶, 卫文婷, 曹涵, 等. 干旱区凝结水研究进展[J]. 灌溉排水学报, 2018, 37(增刊2): 102-106.
[11] [Lu Xiaoyao, Wei Wenting, Cao Han, et al. Advances in the condensation water in arid regions[J]. Journal of Irrigation and Drainage, 2018, 37(Suppl. 2): 102-106.]
[12] 冯天骄, 张智起, 张立旭, 等. 干旱半干旱区生态系统凝结水的影响因素及其作用研究进展[J]. 生态学报, 2021, 41(2): 456-468.
[12] [Feng Tianjiao, Zhang Zhiqi, Zhang Lixu, et al. Review on the influencing factors and functions of condensation water in arid and semi-arid ecosystems[J]. Acta Ecologica Sinica, 2021, 41(2): 456-468.]
[13] 肖辉杰, 张锋, 贾瑞燕. 凝结水研究进展[J]. 中国水土保持科学, 2015, 13(2): 126-130.
[13] [Xiao Huijie, Zhang Feng, Jia Ruiyan. Progress of study on condensation water[J]. Science of Soil and Water Conservation, 2015, 13(2): 126-130.]
[14] 李洪波. 半干旱区凝结水形成机制及对植物水分特性的影响[D]. 呼和浩特: 内蒙古农业大学, 2010.
[14] [Li Hongbo. Formation mechanism of condensation water and its effects on the moisture characteristics of plant in semi-arid area[D]. Hohhot: Inner Mongolia Agricultural University, 2010.]
[15] 郭占荣, 刘建辉. 中国干旱半干旱地区土壤凝结水研究综述[J]. 干旱区研究, 2005, 22(4): 160-164.
[15] [Guo Zhanrong, Liu Jianhui. An overview on soil condensate in arid and semiarid regions in China[J]. Arid Zone Research, 2005, 22(4): 160-164.]
[16] Jacobs A F G, Heusinkveld B G, Berkowicz S M. Passive dew collection in a grassland area, the Netherlands[J]. Atmosoheric Research, 2008, 87: 377-385.
[17] 成龙, 贾晓红, 吴波, 等. 高寒沙区生物土壤结皮覆盖区凝结水组分分析[J]. 高原气象, 2019, 38(2): 439-447.
[17] [Cheng Long, Jia Xiaohong, Wu Bo, et al. Composition analysis of condensation water in biological soil crusts covering area in alpine sandy lands[J]. Plateau Meteorology, 2019, 38(2): 439-447.]
[18] 李胜龙, 肖波, 孙福海. 黄土高原干旱半干旱区生物结皮覆盖土壤水汽吸附与凝结特征[J]. 农业工程学报, 2020, 36(15): 111-119.
[18] [Li Shenglong, Xiao Bo, Sun Fuhai. Characteristics of water vapor sorption and condensation in biocrusts covered surface soil in arid an semiarid areas of the Loess Plateau, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 111-119.]
[19] 郭冰寒. 毛乌素沙地不同环境条件对土壤凝结水的影响[D]. 北京: 北京林业大学, 2017.
[19] [Guo Binghan. Effects of different environments on soil condensation water in Mu Us Sand Land[D]. Beijing: Beijing Forestry University, 2017.]
[20] 郭斌, 李卫红, 郝兴明, 等. 极端干旱区不同下垫面土壤凝结水试验研究[J]. 地理科学进展, 2012, 31(9): 1171-1179.
[20] [Guo Bin, Li Weihong, Hao Xingming, et al. Measurements of soil condensation water on different types of underlying surfaces in extreme arid region[J]. Progress in Geography, 2012, 31(9): 1171-1179.]
[21] 成龙, 贾晓红, 吴波, 等. 高寒沙区吸湿凝结水凝结过程与温湿度的关系[J]. 中国沙漠, 2019, 39(3): 1-10.
[21] [Cheng Long, Jia Xiaohong, Wu Bo, et al. Relationship between the condensation process of hygroscopic and condensation water and the air & soil humiture in alpine sandy lands[J]. Journal of Desert Research, 2019, 39(3): 1-10.]
[22] Kidron G J. Analysis of dew precipitation in three habitats within a small arid drainage basin, Negev Highlands, Israel[J]. Atmospheric Research, 2000, 55: 257-270.
[23] Nahid A, Dariush R, Behnam G, et al. Spatial and temporal investigation of dew potential based on long-term model simulations in Iran[J]. Water, 2019, 11(12): 2463, doi: 10.3390/w11122463.
[24] 陈翠琴. 凝结水的形成及变化规律[J]. 安徽农业科学, 2015, 43(31): 30-32.
[24] [Chen Cuiqin. Formation of condensate and change rule[J]. Journal of Anhui Agricultural Sciences, 2015, 43(31): 30-32.]
[25] 郭晓楠. 毛乌素沙地沙生灌木生态系统夜间水汽交换过程与环境控制[D]. 北京: 北京林业大学, 2017.
[25] [Guo Xiaonan. Dynamics and environmental control of nocturnal vapor exchange in a desert shrub ecosystem in Mu Us Desert[D]. Beijing: Beijing Forestry University, 2017.]
[26] 刘志东. 干旱区荒漠植物群落凝结水的形成与利用[D]. 乌鲁木齐: 新疆大学, 2017.
[26] [Liu Zhidong. Formation and utilization of condensate in desert plant community in arid region[D]. Urumqi: Xinjiang University, 2017.]
[27] Kidron G J. Angle and aspect dependent dew and fog precipitation in the Negev Desert[J]. Journal of Hydrology, 2005, 301: 66-74.
[28] 王恒方. 凝结水对荒漠植物群落特征及稳定性的影响[D]. 乌鲁木齐: 新疆大学, 2017.
[28] [Wang Hengfang. Effects of condensed water on characteristics and stability of desert plant communities[D]. Urumqi: Xinjiang University, 2017.]
[29] Xu Y Y, Yan B X, Tang J. The effect of climate change on variations in dew amount in a paddy ecosystem of the Sanjiang Plain, China[J]. Advances in Meteorology, 2015: 1-9, doi: 10.1155/2015/793107.
[30] Tomaszkiewicz M, Abou N M, Beysens D, et al. Projected climate change impacts upon dew yield in the Mediterranean Basin[J]. Science of the Total Environment, 2016, 566-567: 1339-1348.
[31] 孙岩, 王一博, 孙哲, 等. 有机质对青藏高原多年冻土活动层土壤持水性能的影响[J]. 中国沙漠, 2017, 37(2): 288-295.
[31] [Sun Yan, Wang Yibo, Sun Zhe, et al. Impact of organic matter on water hold capacity in permafrost active layer in the Tibetan Plateau[J]. Journal of Desert Research, 2017, 37(2): 288-295.]
[32] 徐洪亮. 青藏高原多年冻土活动层水热特征及其对土壤渗透性影响分析[D]. 兰州: 兰州大学, 2021.
[32] [Xu Hongliang. Analysis of hydrothermal characteristics of active permafrost layer and its influence on soil permeability in Qinghai-Tibet Plateau[D]. Lanzhou: Lanzhou University, 2021.]
[33] Pan T, Hou S, Liu Y, et al. Influence of degradation on soil water availability in an alpine swamp meadow on the eastern edge of the Tibetan Plateau[J]. Science of the Total Environment, 2020, 722: 137677, doi: 10.1016/j.scitotenv.2020.137677.
[34] 范科科, 张强, 孙鹏, 等. 青藏高原土壤水分变化对近地面气温的影响[J]. 地理学报, 2020, 75(1): 82-97.
[34] [Fan Keke, Zhang Qiang, Sun Peng, et al. Effect of soil moisture variation on near-surface air temperature over the Tibetan Plateau[J]. Acta Geographocia Sinica, 2020, 75(1): 82-97.]
[35] He S, Richards K. The role of dew in the monsoon season assessed via stable isotopes in an alpine meadow in northern Tibet[J]. Atmospheric Research, 2015, 151: 101-109.
[36] 董梁. 可可西里地区盐湖下游河道冲刷演变数值模拟研究[D]. 西安: 西安理工大学, 2021.
[36] [Dong Liang. Numerical simulation of formation and evolution of river channel downstream of the Hoh-Xil region[D]. Xi’an: Xi’an University of Technology, 2021.]
[37] 陈强, 冶富寿, 陈育红, 等. 青藏高原可可西里盐湖水量平衡初步分析[J]. 人民长江, 2020, 51(5): 94-98.
[37] [Chen Qiang, Ye Fushou, Chen Yuhong, et al. Preliminary study on water balance for Salt Lake in Hoh Xil, Tibetan Plateau[J]. Yangtze River, 2020, 51(5): 94-98.]
[38] 侯新伟, 陈浩, 李向全, 等. 中国北方土壤凝结水研究综述[J]. 工程勘察, 2009, 37(8): 42-46.
[38] [Hou Xinwei, Chen Hao, Li Xiangquan, et al. An overview on soil condensate in north China[J]. Geotechnical Investigation & Surveying, 2009, 37(8): 42-46.]
[39] 宁贺. 函数型主成分分析的研究及其应用[D]. 长春: 吉林大学, 2021.
[39] [Ning He. Research and application of functional principal component analysis[D]. Changchun: Jilin University, 2021.]
[40] 邢洁, 宋男哲, 陈祥伟, 等. 基于主成分分析的松花江流域黑龙江段水质评价[J]. 中国给水排水, 2021, 37(1): 89-94.
[40] [Xing Jie, Song Nanzhe, Chen Xiangwei, et al. Water quality assessment of Heilongjiang control section in Songhua River Basin based on principal component analysis[J]. China Water & Wastewater, 2021, 37(1): 89-94.]
[41] 郭小芹, 李光明, 孙占峰, 等. 祁连山及周边降水分布聚类检验和典型流域增雨效果评价[J]. 干旱区地理, 2022, 45(3): 706-714.
[41] [Guo Xiaoqin, Li Guangming, Sun Zhanfeng, et al. Cluster analysis with statistical test of precipitation distribution in Qilian Mountains and its surrounding area and evaluation of artificial precipitation enhancement in typical watershed[J]. Arid Land Geography, 2022, 45(3): 706-714.]
[42] 孙自永, 余绍文, 周爱国, 等. 新疆罗布泊地区凝结水试验[J]. 地质科技情报, 2008, 27(2): 91-96.
[42] [Sun Ziyong, Yu Shaowen, Zhou Aiguo, et al. Experimental study on the condensation water in Lop Nur region, Xinjiang[J]. Geological Science and Technology Information, 2008, 27(2): 91-96.]
[43] 陈荣毅. 古尔班通古特沙漠表层土壤凝结水水汽来源特征分析[J]. 中国沙漠, 2012, 32(4): 985-989.
[43] [Chen Rongyi. Source of soil condensation water in the Gurbantunggut Desert[J]. Journal of Desert Research, 2012, 32(4): 985-989.]
[44] 冯欣, 高业新, 张亚哲. 华北平原典型区域土壤凝结水观测及其影响因素研究[J]. 南水北调与水利科技, 2013, 11(5): 132-135.
[44] [Feng Xin, Gao Yexin, Zhang Yazhe. Observation on soil condensation water and its impact factors in typical region of North China Plain[J]. South-North Water Transfers and Water Science & Technology, 2013, 11(5): 132-135.]
文章导航

/