气候与水文

1973—2020年甘肃河东夏半年降水变化特征及影响因素分析

  • 曹彦超 ,
  • 焦美玲 ,
  • 秦拓 ,
  • 郭桐
展开
  • 庆阳市气象局,甘肃 庆阳 745000
曹彦超(1985-),男,工程师,主要从事中长期气候预测及短时临近天气预报等方面的工作. E-mail: 646891024@qq.com

收稿日期: 2022-03-28

  修回日期: 2022-05-24

  网络出版日期: 2023-02-01

基金资助

甘肃省气象局科研项目(MS2021-09);甘肃省气象局科研项目(ZcMs2022-33);甘肃省科技计划资助项目(20JR5RM626)

Variation characteristics and influencing factors of summer half-year precipitation in Hedong region of Gansu Province from 1973 to 2020

  • Yanchao CAO ,
  • Meiling JIAO ,
  • Tuo QIN ,
  • Tong GUO
Expand
  • Qingyang Meteorological Bureau, Qingyang 745000, Gansu, China

Received date: 2022-03-28

  Revised date: 2022-05-24

  Online published: 2023-02-01

摘要

基于1973—2020年4—9月甘肃河东60个国家气象观测站的降水资料,采用经验正交函数分解、相关分析等方法,分析了不同量级降水的时空分布及变化特征,并讨论了气温、大尺度环流、地形等对夏季降水的影响。结果表明:(1) 河东西部位于季风区最末端,气温变化对降水影响相对显著。其中甘南高原及以北山区海拔高度高,输入性水汽少,气候变暖对水循环的促进使降水量趋于增多。西部其他区域输入性水汽仍占主导地位,冷空气活动减弱使降水量趋于减少。(2) 河东东部地形过渡平缓,降水受季风影响显著。1998年后Niño 3.4区(5°N~5°S、120°~170°W)海温转为负距平为主,随着季风增强及雨带北抬,降水量随之增长。(3) 河东地区降水量年际变化的主要特征是所有站点同时增大或减小,但在拉尼娜年更容易出现东、西部降水反相变化的特征,太平洋年代际振荡负相位时西部地区降水增多,东部部分站点减少,北极涛动负相位时,东南部降水增多,西部部分站点减少。甘肃河东夏半年降水变化及影响分析,不仅为复杂地形下大气环流和气候变暖对降水变化影响的差异性研究提供参考,还将丰富季风区末端降水预测依据。

本文引用格式

曹彦超 , 焦美玲 , 秦拓 , 郭桐 . 1973—2020年甘肃河东夏半年降水变化特征及影响因素分析[J]. 干旱区地理, 2022 , 45(6) : 1695 -1706 . DOI: 10.12118/j.issn.1000-6060.2022.123

Abstract

The Hedong region of Gansu Province, China, is located in the convergence zone of the Qinghai-Tibet Plateau and Loess Plateau. The terrain is complex and diverse, and the altitude drop is up to 3961 m. The precipitation climate difference is obvious, and several studies have shown that the precipitation in this region exhibits different trends in recent years. This project is based on the precipitation data of 60 national meteorological stations in the Hedong region from April to September between 1973 and 2020. The temporal and spatial distributions and variation characteristics of total precipitation and precipitation of different magnitudes are analyzed using an empirical orthogonal function method, and the influence of temperature, large-scale circulation, topography, and other factors on summer half-year precipitation in different regions are investigated using a correlation analysis method. The results are as follows: (1) The western part of the Hedong region is located at the end of the East Asian monsoon region. Light rain and moderate rain account for the largest proportion of the total precipitation, and temperature changes have a significant impact on precipitation. The altitude of the Gannan Plateau and the northern mountain area is high, and the input water vapor is less. The promotion of climate warming on the local water cycle makes the precipitation tend to increase. The imported water vapor remains dominant in other regions in the western part, and the weakening of cold air activity makes the precipitation tend to decrease. (2) The eastern part of the Hedong region has a gentle terrain transition, and the precipitation is significantly affected by the East Asian monsoon. After 1998, the sea surface temperature in the Niño 3.4 area was primarily a negative anomaly. With the strengthening of the monsoon and the northward uplift of the Chinese rain belt, the precipitation in the eastern region increased. (3) The main feature of interannual variation in precipitation in the Hedong region is that all stations increase or decrease simultaneously, but an inverse variation in precipitation in the eastern and western regions easily occurs in a La Niña year. In the negative phase of PDO, the precipitation in the western region increases significantly and decreases in some stations in the eastern part. In the negative phase of AO, the precipitation in the southeast increases significantly and decreases in some stations in the western part. Different from the traditional research on precipitation climate change, this study focuses on the comparative analysis of the specific impact of temperature and large-scale circulation systems on the precipitation change in the summer half-year under different topographic characteristics at the end of the East Asian monsoon region, which will provide a new idea for predicting precipitation climate change in the monsoon region and is of great significance for coping with climate change and promoting disaster prevention and reduction.

参考文献

[1] 姜大膀, 王娜. IPCC AR6报告解读: 水循环变化[J]. 气候变化研究进展, 2021, 17(6): 699-704.
[1] [Jiang Dabang, Wang Na. Water cycle changes: Interpretation of IPCC AR6[J]. Climate Change Research, 2021, 17(6): 699-704.]
[2] 卢爱刚. 半个世纪以来黄土高原降水的时空变化[J]. 生态环境学报, 2009, 18(3): 957-959.
[2] [Lu Aigang. Spatial and temporal precipitation variation on the Loess Plateau in the past half century[J]. Ecology and Environmental Sciences, 2009, 18(3): 957-959.]
[3] 于淑秋, 林学椿, 徐祥德. 我国西北地区近50年降水和温度的变化[J]. 气候与环境研究, 2003, 8(1): 9-18.
[3] [Yu Shuqiu, Lin Xuechun, Xu Xiangde. The climatic change in northwest China in recent 50 years[J]. Climatic and Environmental Research, 2003, 8(1): 9-18.]
[4] 王澄海, 张晟宁, 李课臣, 等. 1961—2018年西北地区降水的变化特征[J]. 大气科学, 2021, 45(4): 713-724.
[4] [Wang Chenghai, Zhang Shengning, Li Kechen, et al. Change characteristics of precipitation in northwest China from 1961 to 2018[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(4): 713-724.]
[5] 陈冬冬, 戴永久. 近五十年我国西北地区降水强度变化特征[J]. 大气科学, 2009, 33(5): 923-935.
[5] [Chen Dongdong, Dai Yongjiu. Characteristics of northwest China rainfall intensity in recent 50 years[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(5): 923-935.]
[6] 郭嘉兵, 李金文, 马金珠, 等. 甘肃省1961—2018年降水量时空分布与变化研究[J]. 灌溉排水学报, 2021, 40(3): 142-148.
[6] [Guo Jiabing, Li Jinwen, Ma Jinzhu, et al. Spatiotemporal variation in precipitation over Gansu Province from 1961 to 2018[J]. Journal of Irrigation and Drainage, 2021, 40(3): 142-148.]
[7] 赵一飞, 邹欣庆, 张勃, 等. 黄土高原甘肃区降水变化与气候指数关系[J]. 地理科学, 2015, 35(10): 1325-1332.
[7] [Zhao Yifei, Zou Xinqing, Zhang Bo, et al. Precipitation variation in association with climate indices in Loess Plateau of Gansu Province, northwest China[J]. Scientia Geographica Sinica, 2015, 35(10): 1325-1332.]
[8] 李栋梁, 魏丽, 蔡英, 等. 中国西北现代气候变化事实与未来趋势展望[J]. 冰川冻土, 2003, 25(2): 135-142.
[8] [Li Dongliang, Wei Li, Cai Ying, et al. The present facts and the future tendency of the climate change in northwest China[J]. Journal of Glaclology and Geocryology, 2003, 25(2): 135-142.]
[9] 宋连春, 张存杰. 20世纪西北地区降水量变化特征[J]. 冰川冻土, 2003, 25(2): 143-148.
[9] [Song Lianchun, Zhang Cunjie. Changing features of precipitation over nothwest China during the 20th century[J]. Journal of Glaclology and Geocryology, 2003, 25(2): 143-148.]
[10] 陈冬冬, 戴永久. 近五十年中国西北地区夏季降水场变化特征及影响因素分析[J]. 大气科学, 2009, 33(6): 1247-1258.
[10] [Chen Dongdong, Dai Yongjiu. Characteristics and analysis of typical anomalous summer rainfall patterns in northwest China over the last 50 years[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(6): 1247-1258.]
[11] 黄玉霞, 王宝鉴, 王研峰, 等. 东亚夏季风的变化特征及其对甘肃夏季暴雨日数的影响[J]. 中国沙漠, 2017, 37(1): 140-147.
[11] [Huang Yuxia, Wang Baojian, Wang Yanfeng, et al. Variation of East Asian summer monsoon and its influences on summer rainstorm days in Gansu, China[J]. Journal of Desert Research, 2017, 37(1): 140-147.]
[12] 刘新伟, 王澄海, 郭润霞, 等. 1981—2018年甘肃省极端暴雨天气过程的气候与环流特征[J]. 干旱气象, 2021, 39(5): 750-758.
[12] [Liu Xinwei, Wang Chenghai, Guo Runxia, et al. Climate and circulation characteristics of extreme rainstorm processes in Gansu from 1981 to 2018[J]. Journal of Arid Meteorology, 2021, 39(5): 750-758.]
[13] 管晓丹, 马洁茹, 黄建平, 等. 海洋对干旱半干旱区气候变化的影响[J]. 中国科学: 地球科学, 2019, 49(6): 895-912.
[13] [Guan Xiaodan, Ma Jieru, Huang Jianping, et al. Influence of ocean on climate change in arid and semi-arid areas[J]. Scientia Sinica Terrae, 2019, 49(6): 895-912.]
[14] 胡梦玲, 游庆龙. 青藏高原南侧经圈环流变化特征及其对降水影响分析[J]. 高原气象, 2019, 38(1): 14-28.
[14] [Hu Mengling, You Qinglong. Characteristics of meridional circulation cell on the south side of Qinghai-Tibetan Plateau and its effects on precipitation over the region[J]. Plateau Meteorology, 2019, 38(1): 14-28.]
[15] 冯晓莉, 申红艳, 李万志, 等. 1961—2017年青藏高原暖湿季节极端降水时空变化特征[J]. 高原气象, 2020, 39(4): 694-705.
[15] [Feng Xiaoli, Shen Hongyan, Li Wanzhi, et al. Spatiotemporal changes for extreme precipitation in wet season over the Qinghai-Tibetan Plateau and the surroundings during 1961—2017[J]. Plateau Meteorology, 2020, 39(4): 694-705.]
[16] 赵光平, 姜兵, 王勇, 等. 西北地区东部夏季水汽输送特征及其与降水的关系[J]. 干旱区地理, 2017, 40(2): 239-247.
[16] [Zhao Guangping, Jiang Bing, Wang Yong, et al. Characteristics of summer water vapor transport in the eastern northwest China and their relationships with precipitation[J]. Arid Land Geography, 2017, 40(2): 239-247.]
[17] Zhao G J, Huang G, Wu R G, et al. A new upper-level circulation index for the East Asian summer monsoon variability[J]. Journal of Climate, 2015, 28(24): 9977-9996.
[18] 艳艳. 强降水对相关气象要素的依赖性研究[D]. 北京: 中国气象科学研究院, 2019.
[18] [Yan Yan. Study on the dependence of heavy precipitation on relevant meteorological elements[D]. Beijing: Chinese Academy of Meteorological Sciences, 2019.]
[19] 梁宏. 青藏高原大气水汽变化和对辐射影响的模拟[D]. 北京: 中国气象科学研究院, 2012.
[19] [Liang Hong. Simulation of atmospheric water vapor variation and its influence on radiation over the Qinghai Tibet Plateau[D]. Beijing: Chinese Academy of Meteorological Sciences, 2012.]
[20] 赵一飞, 张勃, 汪宝龙, 等. 近54 a来甘肃省河东地区气候时空变化特征[J]. 干旱区研究, 2012, 29(6): 956-964.
[20] [Zhao Yifei, Zhang Bo, Wang Baolong, et al. Spatiotemporal climate change in the Hedong region in Gansu Province in recent 54 years[J]. Arid Zone Research, 2012, 29(6): 956-964.]
[21] 王素艳, 纳丽, 王璠, 等. 海冰和海温对西北地区中部6月降水异常的协同影响[J]. 干旱区地理, 2021, 44(1): 63-72.
[21] [Wang Suyan, Na Li, Wang Fan, et al. Synergistic effects of ice and sea surface temperature on the precipitation abnormal in June in the central part of northwest China[J]. Arid Land Geography, 2021, 44(1): 63-72.]
[22] 段欣妤, 薛峰, 郑飞. El Ni?o衰减年夏季西太平洋副热带高压的季节内变化[J]. 大气科学, 2020, 44(6): 1364-1376.
[22] [Duan Xinyu, Xue Feng, Zheng Fei. Intraseasonal variation of the Western Pacific subtropical high during the El Ni?o decaying summers[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(6): 1364-1376.]
[23] Qi T, Huang Y Y, Duan M K, et al. Possible contribution of the PDO to the eastward retreat of the Western Pacific subtropical high[J]. Atmospheric and Oceanic Science Letters, 2021, 14(1): 29-34.
文章导航

/