生物与土壤

毛乌素沙地东南缘植被NDVI时空变化及其对气候因子的响应

  • 贺军奇 ,
  • 魏燕 ,
  • 高万德 ,
  • 陈云飞 ,
  • 马延东 ,
  • 刘秀花
展开
  • 长安大学水利与环境学院,旱区地下水文与生态效应教育部重点实验室,国家林业和草原局黄土高原水土保持与生态修复重点实验室,陕西 西安 710054
贺军奇(1978-),男,博士,副教授,主要从事水文生态学研究. E-mail: 516588675@qq.com

收稿日期: 2022-01-10

  修回日期: 2022-03-12

  网络出版日期: 2022-10-20

基金资助

国家自然科学基金项目(41877179);国家自然科学基金项目(41901034);陕西水利科技计划项目(2019s1kj-18);中央高校基本科研业务费项目(300102292904)

Temporal and spatial variation of vegetation NDVI and its response to climatic factors in the southeastern margin of Mu Us Sandy Land

  • Junqi HE ,
  • Yan WEI ,
  • Wande GAO ,
  • Yunfei CHEN ,
  • Yandong MA ,
  • Xiuhua LIU
Expand
  • School of Water and Environment, Chang’an University, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Key Laboratory of Soil and Water Conservation and Ecological Restoration on the Loess Plateau of National Forestry and Grassland Administration, Xi’an 710054, Shaanxi, China

Received date: 2022-01-10

  Revised date: 2022-03-12

  Online published: 2022-10-20

摘要

了解植被生长对气候变化的响应是厘清生态系统动态关系的重点。基于1990—2018年气象数据和归一化植被指数(NDVI),应用偏相关分析与地理探测器等方法,分析了在生长季,毛乌素沙地东南缘不同类型植被年均NDVI的变化趋势,探讨了年均气温与年总降水量对各类型植被的影响。结果表明:(1) 1990—2018年生长季研究区植被年均NDVI显著与极显著增加面积达97.9%,整体生态环境质量大幅度改善。2005年之前植被年均NDVI增速缓慢,此后以0.011·a-1的速率发生了突变增加,其中灌丛类植被年均NDVI增长幅度最大。(2) 2000年为年总降水量与年均气温的趋势突变点,突变前年总降水量以-5.510 mm·a-1的速率减少,此后以5.541 mm·a-1的速率增加,且主要依赖于大雨雨量的增加;年均高温与年均低温在突变前上升速率分别为0.122 ℃·a-1与0.230 ℃·a-1,突变后,年均高温下降速率为-0.014 ℃·a-1,而年均低温上升速率为0.022 ℃·a-1。(3) 在植被年均NDVI缓慢增长阶段(1990—2005年),年均低温对植被影响较大,与不同类型植被年均NDVI多呈显著正相关;在植被年均NDVI快速增长阶段(2006—2018年),年总降水量与不同类型植被年均NDVI呈显著正相关,大降雨事件的频发使得降水量对于植被的生长起主导作用。年总降水量与年均气温尤其是年均低温的交互作用是促进植被生长的关键。

本文引用格式

贺军奇 , 魏燕 , 高万德 , 陈云飞 , 马延东 , 刘秀花 . 毛乌素沙地东南缘植被NDVI时空变化及其对气候因子的响应[J]. 干旱区地理, 2022 , 45(5) : 1523 -1533 . DOI: 10.12118/j.issn.1000-6060.2021.017

Abstract

A central element in understanding the dynamic relationship between ecosystems is achieved by understanding the response of vegetation growth to climate change. Based on the meteorological data and normalized difference vegetation index (NDVI) from 1990 to 2018, the variation in the NDVI of different types of vegetation in the southeast margin of Mu Us Sandy Land of Shaanxi, China during the growing season was analyzed via use of a partial correlation analysis and geographic detector data, and the effects of temperature and precipitation on various types of vegetation are discussed. The results show that: (1) In the growing seasons from 1990 to 2018, the annual NDVI for vegetation across the whole region increased significantly by 97.9%, and the overall eco-environmental quality was significantly improved. The growth rate of the annual NDVI of vegetation was slow prior to 2005, and then it increased sharply with a rate of increase of 0.011·a-1; across the observed increases, the annual NDVI related to shrub vegetation increased the most. (2) The year 2000 represented a transition year; a significant change in the behavior of the total precipitation and annual air temperature was observed in the year 2000. The total precipitation was seen to decrease at a rate of -5.510 mm·a-1 before this transition year and increase with a rate of 5.541 mm·a-1 after this transition year; these values were dominated by heavy rainfall events. Prior to this abrupt change in the year 2000, the annual rate of increase of annual extreme daily mean temperature and annual minimum daily mean temperature were 0.122 ℃·a-1 and 0.230 ℃·a-1, respectively. After the year 2000, the average annual decreasing rate of annual extreme daily mean temperature was -0.014 ℃·a-1, and the average annual rising rate of annual minimum daily mean temperature was 0.022 ℃·a-1. (3) In the slow growth stage of the NDVI (1990—2005), the annual minimum daily mean temperature was positively correlated with the annual NDVI of different types of vegetation, and had the greatest influence; in the rapid growth stage of annual NDVI (2006—2018), the total precipitation was positively correlated with the annual NDVI of different types of vegetation, and the frequent occurrence of heavy rainfall events meant that the total precipitation had a dominant effect on the growth of vegetation. This work finds that the interaction between total precipitation and annual air temperature, especially the annual minimum daily mean temperature, is the key factor in the promotion of the growth of vegetation.

参考文献

[1] 李明, 孙洪泉, 苏志诚. 中国西北气候干湿变化研究进展[J]. 地理研究, 2021, 40(4): 1180-1194.
[1] [Li Ming, Sun Hongquan, Su Zhicheng. Research progress in dry/wet climate variation in northwest China[J]. Geographical Research, 2021, 40(4): 1180-1194. ]
[2] 赵志平, 邵全琴, 黄麟. 2008年南方特大冰雪冻害对森林损毁的NDVI响应分析——以江西省中部山区林地为例[J]. 地球信息科学, 2009, 11(4): 20-29.
[2] [Zhao Zhiping, Shao Quanqin, Huang Lin. NDVI response of forest damage to extreme snow and ice damage in southern China in 2008: A case study of mountainous forest in central Jiangxi Province[J]. Journal of Geo-information Science, 2009, 11(4): 20-29. ]
[3] 孙睿, 刘昌明, 朱启疆. 黄河流域植被覆盖度动态变化与降水的关系[J]. 地理学报, 2001, 56(6): 667-672.
[3] [Sun Rui, Liu Changming, Zhu Qijiang. Relationship between vegetation coverage and precipitation in the Yellow River Basin[J]. Acta Geographica Sinica, 2001, 56(6): 667-672. ]
[4] 岳健, 穆桂金, 唐自华, 等. 基于NDVI的新疆荒漠地区植被覆盖度遥感估算经验模型研究[J]. 干旱区地理, 2020, 43(1): 153-160.
[4] [Yue Jian, Mu Guijin, Tang Zihua, et al. Remote sensing estimation models for vegetation coverage in desert regions of Xinjiang based on NDVI[J]. Arid Land Geography, 2020, 43(1): 153-160. ]
[5] Horion S, Cornet Y, Erpicum M. Studying interactions between climate variability and vegetation dynamic using a phenology based approach[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 20: 20-32.
[6] Gao Z Q, Dennis O. The temporaland spatial relationship between NDVI and climatological parameters in Colorado[J]. Journal of Geographical Sciences, 2001, 11(4): 411-419.
[7] 李晴晴, 曹艳萍, 苗书玲. 黄河流域植被时空变化及其对气候要素的响应研究[J]. 生态学报. [2022-01-10]. http://kns.cnki.net/kcms/detail/11.2031.Q.20220110.1104.032.html.
[7] [Li Qingqing, Cao Yanping, Miao Shuling. Spatio-temporal variation in vegetation coverageand its response to climate factors in the Yellow River Basin, China[J]. Acta Ecologica Sinica.[2022-01-10]. http://kns.cnki.net/kcms/detail/11.2031.Q.20220110.1104.032.html. ]
[8] 冯颖. 毛乌素沙地植被盖度变化及其对气候变化的响应[D]. 北京: 北京林业大学, 2015.
[8] [Feng Ying. Vegetation coverage change in Mu Us Sandy Land and its response to climate change[D]. Beijing: Beijing Forestry University, 2015. ]
[9] 马赟花, 张铜会, 刘新平, 等. 极端降水事件对科尔沁沙地一年生植被的影响[J]. 中国沙漠, 2016, 36(1): 50-56.
[9] [Ma Yunhua, Zhang Tonghui, Liu Xinping, et al. Effect of extreme precipitation event on annuals in the Horqin Sandy Land[J]. Journal of Desert Research, 2016, 36(1): 50-56. ]
[10] 高滢, 孙虎, 徐崟尧, 等. 陕西省植被覆盖时空变化及其对极端气候的响应[J]. 生态学报, 2022, 42(3): 1022-1033.
[10] [Gao Ying, Sun Hu, Xu Yinyao, et al. Temporal and spatial variation of vegetation cover and its response to extreme climate in Shaanxi Province[J]. Acta Ecologica Sinica, 2022, 42(3): 1022-1033. ]
[11] 刘静, 温仲明, 刚成诚. 黄土高原不同植被覆被类型NDVI对气候变化的响应[J]. 生态学报, 2020, 40(2): 678-691.
[11] [Liu Jing, Wen Zhongming, Gang Chengcheng. Normalized difference vegetation index of different vegetation cover types and its responses to climate change in the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(2): 678-691. ]
[12] 解晗, 同小娟, 李俊, 等. 2000—2018年黄河流域生长季NDVI、EVI变化及其对气候因子的响应[J]. 生态学报.[2022-01-10]. http://kns.cnki.net/kcms/detail/11.2031.Q.20220209.1510.010.html.
[12] [Xie Han, Tong Xiaojuan, Li Jun, et al. Changes of NDVI and EVI and their responses to climatic variables in the Yellow River Basin during the growing season of 2000 —2018[J]. Acta Ecologica Sinica, [2022-01-10]. http://kns.cnki.net/kcms/detail/11.2031.Q.20220209.1510.010.html. ]
[13] 中国科学院中国植被图编辑委员会. 1:1000000 中国植被图集[M]. 北京: 科学出版社, 2001.
[13] [Editorial Committee of Vegetationatlas of China, Chinese Academy of Sciences. 1:1000000 vegetation atlas of China[M]. Beijing: Science Press, 2001. ]
[14] 张轩, 张行南, 江唯佳, 等. 秦淮河流域东山站水位预报研究[J]. 水资源保护, 2020, 36(2): 41-46.
[14] [Zhang Xuan, Zhang Xingnan, Jiang Weijia, et al. Study on water level forecast of Dongshan Station in Qinhuai River Basin[J]. Water Resources Protection, 2020, 36(2): 41-46. ]
[15] 申雨晨, 李双双, 延军平, 等. 极点对称模态分解下陕西气候变化特征及影响因素[J]. 干旱区地理, 2021, 44(1): 36-46.
[15] [Shen Yuchen, Li Shuangshuang, Yan Junping, et al. Spatiotemporal climate variation and its influencing factors in Shaanxi Province based on extreme-point symmetric mode decompositior[J]. Arid Land Geography, 2021, 44(1): 36-46. ]
[16] Wang J L, Li Z J. The ESMD method for climate data analysis[J]. Climate Change Research Letters, 2014, 3(1): 1-5.
[17] Wang J F, Li X H, Christakos G, et al. Geographical detectors based health risk assessment and its application in the neural tube defects study of the Heshun Region, China[J]. International Journal of Geographical Information Science, 2010, 24(1): 107-127.
[18] Song Y Z, Wang J F, Ge Y, et al. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data[J]. Giscience & Remote Sensing, 2020, 57(5): 593-610.
[19] 张若婧, 陈跃红, 张晓祥, 等. 基于参数最优地理探测器的江西省山洪灾害时空格局与驱动力研究[J]. 地理与地理信息科学, 2021, 37(4): 72-80.
[19] [Zhang Ruojing, Chen Yuehong, Zhang Xiaoxiang, et al. Spatial-temporal pattern and driving factors of flash flood disasters in Jiangxi Province analyzed by optimal parameters-based geographical detector[J]. Geographyand Geo-information Science, 2021, 37(4): 72-80. ]
[20] 张华, 李明, 宋金岳, 等. 基于地理探测器的祁连山国家公园植被NDVI变化驱动因素分析[J]. 生态学杂志, 2021, 40(8): 2530-2540.
[20] [Zhang Hua, Li Ming, Song Jinyue, et al. Analysis of driving factors of vegetation NDVI change in Qilian Mountain National Park based on geographic detecton[J]. Chinese Journal of Ecology, 2021, 40(8): 2530-2540. ]
[21] Xiu L N, Yan C Z, Li X S, et al. Monitoring the response of vegetation dynamics to ecological engineering in the Mu Us Sandy Land of China from 1982 to 2014[J]. Environmental Monitoring and Assessment, 2018, 190: 543, doi: 10.1007/s1066101869319.
[22] Heisler-White J L, Blair J M, Kelly E F, et al. Contingenet productivity responses to more extreme rainfall regimes acrossa grassland biome[J]. Global Change Biology, 2009, 15(12): 2894-2904.
[23] Dietrich C C, Kreyling J, Jentscha A, et al. Intraspecific variation in response to magnitude and frequency of freeze-thaw cycles ina temperate grass[J]. AoB Plants, 2017, 10(1): 160-168.
[24] Connolly B M, Orrock J L. Climatic variation and seed persistence: Freeze-thaw cycles lower survival via the joint action of abiotic stress and fungal pathogens[J]. Oecologia, 2015, 179(2): 609-616.
[25] Skinner D, Bellinger B S. Freezing tolerance of winter wheatas influenced by extended grow that low temperature sand exposure to freeze-thaw cycles[J]. Canadian Journal of Plant Science, 2017, 97(2): 250-256.
[26] 高国雄. 毛乌素沙地东南缘人工植被结构与生态功能研究[D]. 北京: 北京林业大学, 2007.
[26] [Gao Guoxiong. Study on the structure and ecological function of artificial vegetation in southeastern margin of Mu Us Sandy Land[D]. Beijing: Beijing Forestry University, 2007. ]
文章导航

/