收稿日期: 2021-12-01
修回日期: 2022-03-29
网络出版日期: 2022-10-20
基金资助
内蒙古自然科学基金项目(2021SHZR0524)
Vertical distribution characteristics of wind-sand flow and its grain size under different sand control measures
Received date: 2021-12-01
Revised date: 2022-03-29
Online published: 2022-10-20
为揭示不同防沙措施影响下风沙流结构及其携沙粒度变化规律,采用木质和尼龙网2种材料制作方格沙障、单行沙障、双行沙障与挡沙墙4种防沙措施模型,利用风洞实验对防沙措施前后风沙流结构进行测定,并结合Mastersizer3000激光粒度分布仪对沙样进行粒度组成分析。结果表明:(1) 不同防沙措施迎风侧风沙流垂直分布与未设置防沙措施时基本相似,输沙量随高度的增加而减小,88%以上的输沙量集中在0~10 cm高度层;而背风侧输沙量随高度表现为先增大后减小的变化规律,且随着沙障规格的减小、高度的增加、行间距的变窄、孔隙度的降低输沙量集中范围逐渐向上偏移,输沙量峰值出现的位置由高度较低的透风型方格沙障(7 cm)上移至高度较高的不透风型挡沙墙(26 cm),且近地
闫敏 , 左合君 , 贾光普 , 席成 . 不同防沙措施的风沙流及其携沙粒度垂直分异特征[J]. 干旱区地理, 2022 , 45(5) : 1513 -1522 . DOI: 10.12118/j.issn.1000-6060.2021.580
In order to reveal the characteristics of wind-sand flow and sand-carrying grain size, four types of sand control measures were implemented: checkered sand barriers, single- and double-row sand barriers, and retaining walls made of wood and nylon net. Wind tunnel experiments were carried out at Key Laboratory Desert and Desertification, Chinese Academy of Sciences, Lanzhou City, Gansu Province, China to measure the aeolian flow before and after intervention, and the particle size composition of sand samples was analyzed using a Mastersizer3000 laser particle size distributor. The results show that: (1) the vertical distribution of wind-sand flow with the use of various measures was similar to observations made prior to intervention. Sediment transport increased with increases in height, and more than 88% of the sediment transport was concentrated within the 0-10 cm height layer. Also, leeward side with high-sediment discharge performance first increased and then decreased. It also increased with a decrease in the barrier size, height, line spacing of the narrowing, and porosity, and gradually reduced the upward migration of the sediment discharge concentration. Furthermore, the peak value of sediment transport shifted from the relatively low barrier-type drafty squares (7 cm), upward to the relatively high tight sand retaining wall (26 cm). Moreover, the sediment deposition of the 0-10 cm layer near the surface was less. (2) Affected by the various sand prevention measures, significant differences were found in various levels of sand grain size characteristics and the overall average particle size of sand showed decreases with the increase in height, the change rule of fine sand and sand was mainly distributed in the near surface 5-25 cm layer. Meanwhile, the near surface layer 0-5 cm distribution of fine sand, medium sand, and coarse sand, had a peak value of about 0.300 mm, and the average content was about 12.09%. Smaller grain size parameters were affected by the measured specification changes; the kurtosis changes from wide and flat to medium and narrow with the densification of measured parameters; the change from checkered sand barrier (0.990), single-row sand barrier (0.990), double-row sand barrier (0.996) to sand retaining wall (1.086); and the above change law gradually increased with the increase in indicated wind speed.
[1] | Zhang P, Sherman D J, Li B L. Aeolian creep transport: A review[J]. Aeolian Research, 2021, 51: 100711, doi: 10.1016/j.aeolia.2021.100711. |
[2] | 马倩, 武胜利, 刘永泉, 等. 艾比湖流域抛物线沙丘表层沉积物粒度特征[J]. 中国沙漠, 2014, 34(3): 650-657. |
[2] | [Ma Qian, Wu Shengli, Liu Yongquan, et al. Grain size distribution of the parabolic dunes’ sediments in the Ebinur Lake Basin, Xinjiang, China[J]. Journal of Desert Research, 2014, 34(3): 650-657. ] |
[3] | 沈亚萍, 张春来, 李庆, 等. 中国东部沙区表层沉积物粒度特征[J]. 中国沙漠, 2016, 36(1): 150-157. |
[3] | [Shen Yaping, Zhang Chunlai, Li Qing, et al. Grain-size characteristics of surface sediments in the eastern desert regions of China[J]. Journal of Desert Research, 2016, 36(1): 150-157. ] |
[4] | 王佩, 马倩, 朱元璞, 等. 新疆图开沙漠灌丛沙堆和抛物线形沙丘表层沉积物粒度特征及其沉积环境[J]. 干旱区地理, 2021, 44(6): 1644-1653. |
[4] | [Wang Pei, Ma Qian, Zhu Yuanpu, et al. Grain size characteristics and sedimentary environment of surface sediments from nebkhas and parabolic dunes in the Tukai Desert, Xinjiang[J]. Arid Land Geography, 2021, 44(6): 1644-1653. ] |
[5] | 黎小娟, 李宁, 周智彬, 等. 尼龙网方格沙障的风沙流颗粒分布特征[J]. 水土保持学报, 2016, 30(5): 128-134. |
[5] | [Li Xiaojuan, Li Ning, Zhou Zhibin, et al. Characteristic of sand flux structure and sand particle size distribution based on nylon checkerboard barrier[J]. Journal of Soil and Water Conservation, 2016, 30(5): 128-134. ] |
[6] | Hossein K, Mahmoodabadi M, Jalali V, et al. Sediment flux, wind erosion and net erosion influenced by soil bed length wind velocity and aggregate size distribution[J]. Geoderma, 2018, 323: 22-30. |
[7] | 落桑曲加, 张焱, 马鹏飞, 等. 雅鲁藏布江中游不同地表输沙量特征[J]. 中国沙漠, 2022, 42(2): 6-13. |
[7] | [ Luosang qujia, Zhang Yan, Ma Pengfei, et al. Study on the sand transport quantities on the different landscapes in the middle area of Yarlung Zangbo River[J]. Journal of Desert Research, 2022, 42(2): 6-13. ] |
[8] | 冯大军, 倪晋仁, 李振山. 风沙流中不同粒径组沙粒的输沙量垂向分布实验研究[J]. 地理学报, 2007, 62(11): 1194-1203. |
[8] | [Feng Dajun, Ni Jinren, Li Zhenshan. Vertical mass flux profiles of different grain size groups in aeolian sand transport[J]. Acta Geographica Sinica, 2007, 62(11): 1194-1203. ] |
[9] | 王翠, 雷加强, 李生宇, 等. 策勒绿洲-沙漠过渡带风沙流挟沙粒度的垂直分异[J]. 干旱区地理, 2014, 37(2): 230-238. |
[9] | [Wang Cui, Lei Jiaqiang, Li Shengyu, et al. Vertical distribution of grain size in aeolian flow in Cele oasis-desert ecotone[J]. Arid Land Geography, 2014, 37(2): 230-238. ] |
[10] | 杨转玲, 钱广强, 董治宝, 等. 库姆塔格沙漠北部三垄沙地区风成沉积物粒度特征[J]. 中国沙漠, 2016, 36(3): 589-596. |
[10] | [Yang Zhuanling, Qian Guangqiang, Dong Zhibao, et al. Grain size characteristics of the aeolian sediments from Sanlongsha area of the northern Kumtagh Desert[J]. Journal of Desert Research, 2016, 36(3): 589-596. ] |
[11] | 孔丹, 何清, 张瑞军, 等. 塔克拉玛干沙漠腹地沙尘暴过程贴地层梯度输沙样粒度特征分析[J]. 干旱区资源与环境, 2009, 23(1): 49-53. |
[11] | [Kong Dan, He Qing, Zhang Ruijun, et al. Characteristics of grain sizes for samples of different grades of transporting sediment in the ground layer during the course of sandstorms in the hinterland of the Taklimakan Desert[J]. Journal of Arid Land Resources and Environment, 2009, 23(1): 49-53. ] |
[12] | 董玉祥, 马骏. 风速对海岸风沙流中不同粒径沙粒垂向分布的影响[J]. 中山大学学报, 2008, 47(5): 98-103. |
[12] | [Dong Yuxiang, Ma Jun. Influence of wind velocity on the vertical distribution of different grain size sands in the wind-sand flow on the coastal dune[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2008, 47(5): 98-103. ] |
[13] | 董玉祥, 马骏. 输沙量对海岸沙丘表面风沙流中不同粒径沙粒垂向分布的影响[J]. 中山大学学报, 2009, 48(3): 102-108. |
[13] | [Dong Yuxiang, Ma Jun. Influence of total sand transport rates on the vertical distribution of different sand grain sizes in wind-sand flow on the coastal dune[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2009, 48(3): 102-108. ] |
[14] | Miri A, Dragovich D, Dong Z B. Wind-borne sand mass flux in vegetated surfaces-wind tunnel experiments with live plants[J]. Catena, 2019, 172: 42-434. |
[15] | Dong Z B, Liu X P, Wang H T, et al. The flux profile of a blowing sand cloud: A wind tunnel investigation[J]. Geomorphology, 2002, 49: 219-230. |
[16] | 冯大军, 倪晋仁, 李振山. 风沙流中沙粒粒度的垂直和水平分布特征[J]. 泥沙研究, 2008(5): 22-30. |
[16] | [Feng Dajun, Ni Jinren, Li Zhenshan. Vertical and horizontal profiles of grain size in aeolian sand transport[J]. Journal of Sediment Research, 2008(5): 22-30. ] |
[17] | 闫敏. 乌兰布和沙漠防沙技术措施复合作用机制及其优化配置[D]. 呼和浩特: 内蒙古农业大学, 2020. |
[17] | [Yan Min. Combined action mechanism of Ulan Buh Desert sand prevention technology measures and its optimal configuration[D]. Hohhot: Inner Mongolia Agriculture University, 2020. ] |
[18] | Liu H Y, Hou Z F, Chen Z, et al. Effects of standing stubble on the interception of soil erosion particles[J]. Land Degradation & Development, 2019, 30(3): 328-336. |
[19] | 闫敏, 左合君, 郭跃, 等. 风沙环境下防风挡沙墙复变作用规律的风洞模拟[J]. 北京林业大学学报, 2021, 43(5): 108-117. |
[19] | [Yan Min, Zuo Hejun, Guo Yue, et al. Wind tunnel simulation of complex deformation law on retaining wall under aeolian sand environment[J]. Journal of Beijing Forestry University, 2021, 43(5): 108-117. ] |
[20] | 屈建军, 黄宁, 拓万全, 等. 戈壁风沙流结构特性及其意义[J]. 地球科学进展, 2005, 20(1): 19-23. |
[20] | [Qu Jianjun, Huang Ning, Ta Wanquan, et al. Structural characteristics of gobi sand-drift and its significance[J]. Advances in Earth Science, 2005, 20(1): 19-23. ] |
[21] | Zhang Z C, Dong Z B, Qian G Q. Field observations of the vertical distribution of sand transport characteristics over fine, medium and coarse sand surfaces[J]. Earth Surface Processes and Landforms, 2017, 42(6): 889-902. |
[22] | 张克存, 屈建军, 俎瑞平, 等. 不同下垫面对风沙流特性影响的风洞模拟研究[J]. 干旱区地理, 2004, 27(3): 352-355. |
[22] | [Zhang Kecun, Qu Jianjun, Zu Ruiping, et al. Wind tunnel simulation about the effects of the different underlying surfaces on the features of drifting sand current[J]. Arid Land Geography, 2004, 27(3): 352-355. ] |
[23] | Bagnold R A. The physics of blown sand and desert dunes[M]. New York: Methuen, 1941. |
[24] | 韩致文, 缑倩倩, 杜鹤强, 等. 新月形沙丘表面100 cm高度内风沙流输沙量垂直分布函数分段拟合[J]. 地理科学, 2012, 3(7): 892-897. |
[24] | [Han Zhiwen, Gou Qianqian, Du Heqiang, et al. The piecewise fitting of sand flux vertical distribution of wind-sand flow within 100-cm height above the barchan dune surface[J]. Scientia Geogrephyica Sinica, 2012, 3(7): 892-897. ] |
[25] | Kang L Q, Zou X Y. Experimental investigation of mass flux and transport rate of different size particles in mixed sand transport by wind[J]. Geomorphology, 2020, 367: 107320, doi: 10.1016/j.geomorph.2020.107320. |
[26] | Zhang Z C, Han L Y, Pan K J. Sediment transport characteristics above a gobi surface in northwestern China, and implications for aeolian environments[J]. Aeolian Research, 2021, 53: 100745, doi: org/10.1016/j.aeolia.2021.100745. |
[27] | 郭树江, 杨自辉, 王强强, 等. 青土湖干涸湖底风沙流结构及输沙粒径特征[J]. 生态学杂志, 2021, 40(4): 1166-1176. |
[27] | [Guo Shujiang, Yang Zihui, Wang Qiangqiang, et al. The structure and grain size of wind-sand flow in the dry bottom of Qingtu Lake[J]. Chinese Journal of Ecology, 2021, 40(4): 1166-1176. ] |
[28] | 张正偲, 董治宝. 腾格里沙漠东南部野外风沙流观测[J]. 中国沙漠, 2013, 33(4): 973-980. |
[28] | [Zhang Zhengcai, Dong Zhibao. Field observation of aeolian sediment flux in the southeast Tengger Desert[J]. Journal of Desert Research, 2013, 33(4): 973-980. ] |
[29] | Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1): 3-26. |
[30] | 黎小娟, 周智彬, 李宁, 等. 尼龙网方格沙障风沙流携沙粒度的空间分异特征[J]. 中国沙漠, 2018, 38(1): 76-84. |
[30] | [Li Xiaojuan, Zhou Zhibin, Li Ning, et al. Spatial distribution of grain size in aeolian flow in nylon net checkerboard barrier[J]. Journal of Desert Research, 2018, 38(1): 76-84. ] |
/
〈 |
|
〉 |