地表过程研究

农田近地表风沙流风程效应变化特征研究

  • 冯哲 ,
  • 刘瑞娟 ,
  • 白宇晨 ,
  • 常春平 ,
  • 郭中领 ,
  • 李继峰 ,
  • 王仁德 ,
  • 李庆
展开
  • 1.河北师范大学地理科学学院,河北 石家庄 050024
    2.河北省环境演变与生态建设实验室,河北 石家庄 050024
    3.河北省环境变化遥感识别技术创新中心,河北 石家庄 050024
    4.河北省科学院地理科学研究所,河北 石家庄 050021
冯哲(1997-),女,硕士研究生,主要从事土壤风蚀研究. E-mail: 1092296157@qq.com

收稿日期: 2021-12-13

  修回日期: 2022-03-21

  网络出版日期: 2022-10-20

基金资助

国家自然科学基金项目(41877066);国家自然科学基金项目(41901001);河北省自然科学基金项目(D2018205192);河北省自然科学基金项目(D2018205212);河北省青年拔尖人才项目(13505197)

Variation characteristics of the fetch effect of near surface aeolian sand flux for farmlands

  • Zhe FENG ,
  • Ruijuan LIU ,
  • Yuchen BAI ,
  • Chunping CHANG ,
  • Zhongling GUO ,
  • Jifeng LI ,
  • Rende WANG ,
  • Qing LI
Expand
  • 1. School of Geographical Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
    2. Hebei Key Laboratory of Environmental Change and Ecological Construction, Shijiazhuang 050024, Hebei, China
    3. Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Shijiazhuang 050024, Hebei, China
    4. Institute of Geographical Sciences, Hebei Academy of Sciences, Shijiazhuang 050021, Hebei, China

Received date: 2021-12-13

  Revised date: 2022-03-21

  Online published: 2022-10-20

摘要

风沙流的风程效应研究是定量获取风沙流沿程变化的核心和难点,风程效应是指输沙率随沙床表面或地块长度的增加而不断增大,而后趋于稳定的变化特征,饱和输沙率(fmax)和饱和路径长度(Lsat)是风程效应的重要参数。采用自动连续称重式集沙仪,以河北坝上地区康保县境内典型旱作农田为研究对象,观测了2017、2018年和2021年内4次典型风蚀事件,分析近地表5 cm高度风沙流的风程效应在5 min时间尺度下的变化特征。结果表明:(1) 近地表输沙通量随风程距离的增大而增大。(2) 4次风蚀事件中Lsat的变化范围在11~280 m之间,并存在明显差异,其变化与风速无关。(3) 近地表风沙流的fmax与风速(U)呈幂函数关系。(4) 风程效应的变化特征与地表可蚀性因子、地表微地貌变化有着紧密联系,未来应对不同的土壤类型和质地农田的风程效应进行深入研究。

本文引用格式

冯哲 , 刘瑞娟 , 白宇晨 , 常春平 , 郭中领 , 李继峰 , 王仁德 , 李庆 . 农田近地表风沙流风程效应变化特征研究[J]. 干旱区地理, 2022 , 45(5) : 1500 -1512 . DOI: 10.12118/j.issn.1000-6060.2021.597

Abstract

The fetch effect in aeolian sand transport is a cornerstone for wind erosion modeling and sand dune evaluation. The fetch effect refers to an increase in aeolian sand transport with downstream distance over an eroding surface. The maximum sand flux (fmax) and corresponding critical fetch length (Lsat) are the primary parameters related to the fetch effect. In this paper, a cyclone type instantaneous weighing aeolian sand trap (CCST) was used to observe four typical wind erosion events in 2017, 2018, and 2021 in two farmland regions of Kangbao County, Hebei Province, China. We analyzed the 5 min characteristics of the fetch effect of sand flux at a height of 5 cm above the ground surface. The results revealed that: (1) The aeolian sand flux near the surface increases with the increase in fetch length. (2) The variations of Lsat for the four wind erosion events range from 11 m to 280 m and were obvious and independent on wind velocity (U). (3) The relationship between fmax and U followed a power-law relationship. (4) The extent of the fetch effect may be related to factors including the soil wind erodibility and surface microrelief. More studies are required to explore how the factors related to soil wind erodibility and surface microrelief affect the fetch effect.

参考文献

[1] Guo Z L, Li J F, Chang C P, et al. Logistic growth models for describing the fetch effect of aeolian sand transport[J]. Soil and Tillage Research, 2019, 194: 104306, doi: 10.1016/j.still.2019.104306.
[2] Gillette D A, Herbert G, Stockton P H, et al. Causes of the fetch effect in wind erosion[J]. Earth Surface Processes and Landforms, 1996, 21(7): 641-659.
[3] Bauer B O, Davidson-Arnott R G D, Hesp P A, et al. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport[J]. Geomorphology, 2009, 105(1-2): 106-116.
[4] Chepil W S, Milne R A. Wind erosion of soils in relation to size and nature of the exposed area[J]. Science Agriculture, 1941, 21(8): 479-487.
[5] Chepil W S. Width of field strips to control wind erosion[R]. Manhattan: Kansas State College of Agriculture and Applied Science, 1957.
[6] Owen P R. Saltation of uniform grains in air[J]. Journal of Fluid Mechanics, 1964, 20(2): 225-242.
[7] Pähtz T, Kok J F, Parteli E J, et al. Flux saturation length of sediment transport[J]. Physical Review Letters, 2013, 111(21): 218002, doi: 10.1103/PhysRevLett.111.218002.
[8] Gillette D A, Fryrear D, Xiao J B, et al. Large-scale variability of wind erosion mass flux rates at owens lake: 1. Vertical profiles of horizontal mass fluxes of wind-eroded particles with diameter greater than 50 μm[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D22): 25977-25987.
[9] Bagnold R A. The physics of blown sand and desert dunes, chapmann and hall[M]. London: Methuen, 1974: 68-75.
[10] Kadib A L. Calculation procedure for sand transport by wind on natural beaches[M]. California:Department of the Army, Corps of Engineers, 1964: 7-10.
[11] Dong Z B, Wang H T, Liu X P, et al. The blown sand flux over a sandy surface: A wind tunnel investigation on the fetch effect[J]. Geomorphology, 2004, 57(1-2): 117-127.
[12] 王萍, 郑晓静. 非平稳风沙运动研究进展[J]. 地球科学进展, 2014, 29(7): 786-794.
[12] [Wang Ping, Zheng Xiaojing. Development of unsteady windblown sand transport[J]. Advances in Earth Science, 2014, 29(7): 786-794. ]
[13] Bauer B O, Davidson-Arnott R G D. A general framework for modeling sediment supply to coastal dunes including wind angle, beach geometry, and fetch effects[J]. Geomorphology, 2003, 49(1): 89-108.
[14] Stout J. Wind erosion within a simple field[J]. Transactions of the ASAE, 1990, 33(5): 1597-1600.
[15] 李振山, 张琦峰. 风沙流的输沙率沿程变化规律[J]. 中国沙漠, 2006, 26(2): 189-193.
[15] [Li Zhenshan, Zhang Qifeng. Evolution of streamwise sand transport with distance[J]. Journal of Desert Research, 2006, 26(2): 189-193. ]
[16] Andreotti B, Claudin P, Pouliquen O J G. Measurements of the aeolian sand transport saturation length[J]. Geomorphology, 2010, 123(3-4): 343-348.
[17] Fryrear D W, Saleh A. Wind erosion: Field length[J]. Soil Science, 1996, 161(6): 398-404.
[18] Fryrear D W, Bilbro J D, Saleh A, et al. Rweq: Improved wind erosion technology[J]. Journal of Soil and Water Conservation, 2000, 55(2): 183-189.
[19] Lynch K, Jackson D W, Cooper J A G. The fetch effect on aeolian sediment transport on a sandy beach: A case study from Magilligan Strand, northern Ireland[J]. Earth Surface Processes and Landforms, 2016, 41(8): 1129-1135.
[20] Zhang Z C, Dong Z B, Zhao A G. Observations of gobi aeolian transport and wind fetch effect[J]. Science China Earth Sciences, 2012, 55(8): 1323-1328.
[21] Zobeck T M, Sterk G, Funk R, et al. Measurement and data analysis methods for field-scale wind erosion studies and model validation[J]. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 2003, 28(11): 1163-1188.
[22] Stout J E, Zobeck T M. The wolfforth field experiment: A wind erosion study[J]. Soil Science, 1996, 161(9): 616-632.
[23] Bagnold R A. The measurement of sand storms[J]. Royal Society, 1938, 167(929): 282-291.
[24] Pähtz T, Omeradžić A, Carneiro M V, et al. Discrete element method simulations of the saturation of aeolian sand transport[J]. Geophysical Research Letters, 2015, 42(6): 2063-2070.
[25] 崔雅臻, 郭中领, 常春平, 等. 自动连续称重式集沙仪设计及野外应用[J]. 中国沙漠, 2018, 38(6): 1166-1174.
[25] [Cui Yazhen, Guo Zhongling, Chang Chunping, et al. A continuous-weigh sand trap: Development and feld test[J]. Journal of Desert Research, 2018, 38(6): 1166-1174. ]
[26] Goossens D, Offer Z Y. Wind tunnel and field calibration of six aeolian dust samplers[J]. Atmospheric Environment, 2000, 34(7): 1043-1057.
[27] Fryrear D W. A field dust sampler[J]. Journal of Soil & Water Conservation, 1986, 41(2): 117-120.
[28] Gregory J M, Wilson G R, Singh U B, et al. TEAM: Integrated, process-based wind-erosion model[J]. Environmental Modelling & Software, 2004, 19(2): 205-215.
[29] Hagen L J. Evaluation of the wind erosion prediction system (WEPS) erosion submodel on cropland fields[J]. Environmental Modelling & Software, 2004, 19(2): 171-176.
[30] Nickling W G, Neuman C M K. Wind tunnel evaluation of a wedge-shaped aeolian sediment trap[J]. Geomorphology, 1997, 18(3-4): 333-345.
[31] Bauer B O, Davidson-Arnott R G D, Hesp P A, et al. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport[J]. Geomorphology, 2009, 105(1-2): 106-116.
[32] 王仁德, 邹学勇, 赵婧妍. 北京市农田风蚀的野外观测研究[J]. 中国沙漠, 2011, 31(2): 400-406.
[32] [Wang Rende, Zou Xueyong, Zhao Jingyan. Field observation of farmland wind erosion around Beijing[J]. Journal of Desert Research, 2011, 31(2): 400-406. ]
[33] Zhang Z C, Dong Z B, Zhao A G. Observations of gobi aeolian transport and wind fetch effect[J]. Science China Earth Sciences, 2012, 55(8): 1323-1328.
[34] 牛艳频. 河北坝上农田风沙流结构特征研究[D]. 石家庄: 河北师范大学, 2011.
[34] [Niu Yanpin. A study on the characteristics of sand flow structure in farmland of Bashang, Hebei Province[D]. Shijiazhuang: Hebei Normal University, 2011. ]
[35] Sterk G, Parigiani J, Cittadini E, et al. Aeolian sediment mass fluxes on a sandy soil in central Patagonia[J]. Catena, 2012, 95: 112-123.
[36] Jackson D W T. A new, instantaneous aeolian sand trap design for field use[J]. Sedimentology, 1996, 43(5): 791-796.
[37] 黄亚鹏, 郭中领, 常春平, 等. 不同时间尺度农田风沙流模拟[J]. 中国沙漠, 2020, 40(5): 81-88.
[37] [Huang Yapeng, Guo Zhongling, Chang Chunping, et al. Modeling aeolian sand flux over farmland for different time scales[J]. Journal of Desert Research, 2020, 40(5): 81-88. ]
[38] 杨梅, 李岩瑛, 张春燕, 等. 河西走廊中东部春季沙尘暴变化特征及其典型个例分析[J]. 干旱区地理, 2021, 44(5): 1339-1349.
[38] [Yang Mei, Li Yanying, Zhang Chunyan, et al. Variation characteristics of spring sandstorm and its typical case analysis in the middle east of Hexi Corridor[J]. Arid Land Geography, 2021, 44(5): 1339-1349. ]
[39] 黄越, 程静, 王鹏. 中国北方农牧交错区生态脆弱性时空演变格局与驱动因素——以盐池县为例[J]. 干旱区地理, 2021, 44(4): 1175-1185.
[39] [Huang Yue, Cheng Jing, Wang Peng. Spatiotemporal evolution pattern and driving factors of ecological vulnerability in agro-pastoral region in northern China: A case of Yanchi County in Ningxia[J]. Arid Land Geography, 2021, 44(4): 1175-1185. ]
[40] Wang R D, Zhou N, Li Q, et al. Difference in wind erosion characteristics between loamy and sandy farmlands and the implications for soil dust emission potential[J]. Land Degradation & Development, 2018, 29(12): 4362-4372.
[41] 陶照堂. 摩阻风速的野外测量[J]. 甘肃科技, 2011, 27(23): 66-69, 81.
[41] [Tao Zhaotang. Field measurement of friction wind velocity[J]. Gansu Science and Technology, 2011, 27(23): 66-69, 81. ]
[42] 王仁德, 肖登攀, 常春平, 等. 农田风蚀量随风速的变化[J]. 中国沙漠, 2015, 35(5): 1120-1127.
[42] [Wang Rende, Xiao Dengpan, Chang Chunping, et al. Relationship between wind erosion amount wind velocity in farmland[J]. Journal of Desert Research, 2015, 35(5): 1120-1127. ]
[43] Taylor P A, Shao Y P. Physics and modelling of wind erosion[J]. Boundary Layer Meteorology, 2001, 101(1): 127-128.
文章导航

/