水文与水资源

气候变化背景下尼雅河流域生态基流研究

  • 胡可可 ,
  • 何建村 ,
  • 赵健 ,
  • 苏里坦 ,
  • 张音
展开
  • 1.中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011
    2.中国科学院大学资源与环境学院,北京 100049
    3.新疆水利厅水资源规划研究所,新疆 乌鲁木齐 830000
胡可可(1997-),男,硕士研究生,主要从事干旱区生态水文学等方面的研究. E-mail: hukeke20@mails.ucas.ac.cn

收稿日期: 2021-10-13

  修回日期: 2021-12-01

  网络出版日期: 2022-10-20

基金资助

新疆水利科技专项项目(403-1301-JSN-5MIR);国家自然科学基金项目(41961002)

Ecological base flow in Niya River Basin under climate change

  • Keke HU ,
  • Jiancun HE ,
  • Jian ZHAO ,
  • Litan SU ,
  • Yin ZHANG
Expand
  • 1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Water Resources Planning and Research Institute of Xinjiang Water Resources Department, Urumqi 830000, Xinjiang, China

Received date: 2021-10-13

  Revised date: 2021-12-01

  Online published: 2022-10-20

摘要

流域生态基流是河流生态系统健康稳定的关键,以新疆尼雅河流域为研究区域,根据民丰县气象站1958—2018年的气象数据与尼雅河4个水文监测断面1978—2018年的水文数据,运用趋势拟合、Tennant法、相关性分析和回归模型等分析流域气候变化、确定生态基流并探究其时空分异与保证率变化,揭示生态基流对气候变化的响应。结果表明:61 a来流域气温以0.22 ℃·(10a)-1的速度增加,年降水量以3.8 mm·(10a)-1的速度增加;尼雅水库、八一八渠首、尼雅水文站和尼雅渠首的年生态基流推荐值分别为:1.989 m3·s-1、2.188 m3·s-1、1.755 m3·s-1、1.702 m3·s-1;生态基流年际最大值出现在2010年,最小值在1980年,年内最大值在7月,最小值在1月或12月;空间上表现为上游高下游低,以八一八渠首处最高,尼雅渠首处最低;各站多年平均生态基流保证率分别为:50%、45%、50%、45%,且表现出汛期明显高于非汛期;逐年、逐月生态基流与气温、降水量均在0.01水平上显著相关,但在春夏季对气温敏感,秋冬季对降水量敏感,各水文监测断面的回归模型耦合效果相似,流域整体回归方程R2=0.365,且生态基流对气候变化响应具有整体性和衰减性。研究结果可为尼雅河流域生态调水和水生态修复提供参考。

本文引用格式

胡可可 , 何建村 , 赵健 , 苏里坦 , 张音 . 气候变化背景下尼雅河流域生态基流研究[J]. 干旱区地理, 2022 , 45(5) : 1472 -1480 . DOI: 10.12118/j.issn.1000-6060.2021.476

Abstract

Watershed ecological base flow is crucial for the health and stability of river ecosystems. On the basis of meteorological data obtained by the meteorological station of Minfeng County, Xinjiang, China during 1958—2018 and hydrological data obtained by four hydrological monitoring sections in the Niya River from 1978—2018, we reveal the response of ecological base flow to climate change using trend fitting, Tennant method, correlation analysis, and regression model to analyze the climate change, determine the ecological base flow, and explore its spatiotemporal differentiation and guarantee rate change. Results show that air temperature and precipitation increased at a rate of 0.22 ℃·(10a)-1 and 3.8 mm·(10a)-1, respectively, in the past 61 a. For Niya Reservoir, 818 Canal Head, Niya hydrology station, and Niya Canal head, the recommended annual ecological base flow values are 1.989 m3·s-1, 2.188 m3·s-1, 1.755 m3·s-1, and 1.702 m3·s-1, respectively. The interannual minimum and maximum of the ecological base flow occurred in 1980 and 2010, respectively; the annual maximum occurred in July, and the minimum occurred in January or December. Spatially, it is higher in the upper reaches and lower in the lower reaches, with the highest at the head of 818 Canal and the lowest at the head of Niya Canal. The annual average ecological base current guarantee rate of each station is 50%, 45%, 50%, and 45%, respectively, and it is significantly higher during the flood season than the nonflood season. A significant correlation exists between annual and monthly ecological base flow and temperature and precipitation at the 0.01 level, but it is sensitive to temperature in spring and summer, and to precipitation in autumn and winter. The coupling effect of regression models of all hydrological sections is similar, with the basin overall regression equation obtaining R2=0.365. The response of ecological base flow to climate change has the characteristics of integrity and attenuation. These results can provide a reference for ecological water diversion and water ecological restoration in the Niya River Basin.

参考文献

[1] Arthington A H, Naiman R J, Mcclain M E, et al. Preserving the biodiversity and ecological services of rivers: New challenges and research opportunities[J]. Freshwater Biology, 2010, 55(1): 1-16.
[2] Vrsmarty C J, Mcintyre P, Gessner M, et al. Global threats to human water security and river biodiversity[J]. Nature, 2010, 467(7315): 555-561.
[3] 严登华, 王浩, 王芳, 等. 我国生态需水研究体系及关键研究命题初探[J]. 水利学报, 2007, 38(3): 267-273.
[3] [Yan Denghua, Wang Hao, Wang Fang, et al. Frame of research work on ecological water demand and key topics[J]. Journal of Hydraulic Engineering, 2007, 38(3): 267-273. ]
[4] Dakova S, Uzunov Y, Mandadjiev D. Low flow: The river’s ecosystem limiting factor[J]. Ecological Engineering, 2000, 16(1): 167-174.
[5] 陈昂, 隋欣, 廖文根, 等. 我国河流生态基流理论研究回顾[J]. 中国水利水电科学研究院学报, 2016, 14(6): 401-411.
[5] [Chen Ang, Sui Xin, Liao Wengen, et al. Review study on instream ecological base flow in China[J]. Journal of China Institute of Water Resources and Hydropower Research, 2016, 14(6): 401-411. ]
[6] 徐宗学, 武玮, 于松延. 生态基流研究: 进展与挑战[J]. 水力发电学报, 2016, 35(4): 1-11.
[6] [Xu Zongxue, Wu Wei, Yu Songyan. Ecological baseflow: Progress and challenge[J]. Journal of Hydroelectric Engineering, 2016, 35(4): 1-11. ]
[7] Nie J, Sobel A H, Shaevitz D A, et al. Dynamic amplification of extreme precipitation sensitivity[J]. Proceedings of the National Academy of Sciences, 2018, 115(38): 9467-9472.
[8] 顾磊, 陈杰, 尹家波, 等. 气候变化下中国主要流域气象水文干旱潜在风险传播[J]. 水科学进展, 2021, 32(3): 321-333.
[8] [Gu Lei, Chen Jie, Yin Jiabo, et al. Risk propagation from meteorological to hydrological droughts in a changing climate for main catchments in China[J]. Advances in Water Science, 2021, 32(3): 321-333. ]
[9] 冉玲, 朱海江, 阿依努尔·孜牙别克. 1962—2007年新疆塔城白杨河流域气候变化对水文情势的影响[J]. 冰川冻土, 2010, 32(5): 921-926.
[9] [Ran Ling, Zhu Haijiang, Ziyabuick Ainur. Impact of climate change on hydrological regime in the Baiyanghe River Basin in Tacheng, Xinjiang during 1962—2007[J]. Journal of Glaciology and Geocryology, 2010, 32(5): 921-926. ]
[10] 苏宏超, 沈永平, 韩萍, 等. 新疆降水特征及其对水资源和生态环境的影响[J]. 冰川冻土, 2007, 29(3): 343-350.
[10] [Su Hongchao, Shen Yongping, Han Ping, et al. Precipitation and its impact on water resources and ecological environment in Xinjiang Region[J]. Journal of Glaciology and Geocryology, 2007, 29(3): 343-350. ]
[11] Sisto N P. Environmental flows for rivers and economic compensation for irrigators[J]. Journal of Environmental Management, 2009, 90(2): 1236-1240.
[12] Gippel C J, Stewardson M J. Use of wetted perimeter in defining minimum environmental flows[J]. Regulated Rivers: Research and Manangment, 1998, 14(1): 53-67.
[13] Matthews R C, Bao Y. The Texas method of preliminary instream flow determination[J]. Rivers, 1991, 2(4): 295-310.
[14] 徐宗学, 彭定志, 庞博. 河道生态基流理论基础与计算方法——以渭河关中段为例[M]. 北京: 科学出版社, 2016: 64-88.
[14] [Xu Zongxue, Peng Dingzhi, Pang Bo. Theoretical basis and calculation method of river ecological base flow: Taking Guanzhong section of Weihe River as an example[M]. Beijing: Science Press, 2016: 64-88. ]
[15] 于松延, 徐宗学, 武玮. 基于多种水文学方法估算渭河关中段生态基流[J]. 北京师范大学学报(自然科学版), 2013, 49(增刊1): 175-179.
[15] [Yu Songyan, Xu Zongxue, Wu Wei. Ecological baseflow in the Guanzhong reach of the Wei River estimated by using different hydrological methods[J]. Journal of Beijing Normal University (Natural Science Edition), 2013, 49(Suppl. 1): 175-179. ]
[16] 崔瑛, 张强, 陈晓宏, 等. 生态需水理论与方法研究进展[J]. 湖泊科学, 2010, 22(4): 465-480.
[16] [Cui Ying, Zhang Qiang, Chen Xiaohong, et al. Advances in the theories and calculation methods of ecological water requirement[J]. Journal of Lake Sciences, 2010, 22(4): 465-480. ]
[17] 邓铭江, 王世江, 董新光, 等. 新疆水资源及可持续利用[M]. 北京: 中国水利水电出版社, 2005: 126-148.
[17] [Deng Mingjiang, Wang Shijiang, Dong Xinguang, et al. Water resources and sustainable utilization in Xinjiang[M]. Beijing: China Water Resources and Hydropower Press, 2005: 126-148. ]
[18] Tennant D L. Instream flow regimens for fish, wildlife, recreation and related environmental resources[J]. Fish Eries, 1976, 1(4): 6-10.
[19] 黄康, 李怀恩, 成波, 等. 基于Tennant方法的河流生态基流应用现状及改进思路[J]. 水资源与水工程学报, 2019, 30(5): 103-110.
[19] [Huang Kang, Li Huai’en, Cheng Bo, et al. Application status and improvement ideas of river ecological base flow based on Tennant method[J]. Journal of Water Resources and Water Engineering, 2019, 30(5): 103-110. ]
[20] 李肖杨, 朱成刚, 马玉其, 等. 新疆孔雀河流域生态基流与天然植被需水量研究[J]. 干旱区地理, 2021, 44(2): 337-345.
[20] [Li Xiaoyang, Zhu Chenggang, Ma Yuqi, et al. Ecological baseflow and natural vegetation water requirement of Konqi River Basin, Xinjiang[J]. Arid Land Geography, 2021, 44(2): 337-345. ]
[21] 吴喜军, 李怀恩, 董颖, 等. 基于基流比例法的渭河生态基流计算[J]. 农业工程学报, 2011, 27(10): 154-159.
[21] [Wu Xijun, Li Huai’en, Dong Ying, et al. Calculation of ecological basic flow of Weihe River based on basic flow ratio method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(10): 154-159. ]
[22] 焦文慧, 张勃, 马彬, 等. 近58 a中国北方地区极端气温时空变化及影响因素分析[J]. 干旱区地理, 2020, 43(5): 1220-1230.
[22] [Jiao Wenhui, Zhang Bo, Ma Bin, et al. Temporal and spatial changes of extreme temperature and its influencing factors in northern China in recent 58 years[J]. Arid Land Geography, 2020, 43(5): 1220-1230. ]
[23] 施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J]. 冰川冻土, 2002, 24(3): 219-226.
[23] [Shi Yafeng, Shen Yongping, Hu Ruji. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in northwest China[J]. Journal of Glaciology and Geocryology, 2002, 24(3): 219-226. ]
[24] 吴秀兰, 张太西, 王慧, 等. 1961—2017年新疆区域气候变化特征分析[J]. 沙漠与绿洲气象, 2020, 14(4): 27-34.
[24] [Wu Xiulan, Zhang Taixi, Wang Hui, et al. Characteristics of temperature and precipitation change in Xinjiang during 1961—2017[J]. Desert and Oasis Meteorology, 2020, 14(4): 27-34. ]
[25] 柏玲, 刘祖涵, 陈忠升, 等. 开都河源流区径流的非线性变化特征及其对气候波动的响应[J]. 资源科学, 2017, 39(8): 1511-1521.
[25] [Bai Ling, Liu Zuhan, Chen Zhongsheng, et al. Runoff nonlinear variation and responses to climate fluctuation in the headwater region of the Kaidu River[J]. Resources Science, 2017, 39(8): 1511-1521. ]
[26] 傅丽昕, 陈亚宁, 李卫红, 等. 塔里木河三源流区气候变化对径流量的影响[J]. 干旱区地理, 2008, 31(2): 237-242.
[26] [Fu Lixin, Chen Yaning, Li Weihong, et al. Influence of climatic change on runoff and water resources in the headwaters of Tarim River[J]. Arid Land Geography, 2008, 31(2): 237-242. ]
文章导航

/