地球信息科学

MODIS和Landsat时空融合影像在土壤盐渍化监测中的适用性研究——以渭干河—库车河三角洲绿洲为例

  • 赵巧珍 ,
  • 丁建丽 ,
  • 韩礼敬 ,
  • 金晓叶 ,
  • 郝建平
展开
  • 1.新疆大学地理与遥感科学学院,智慧城市与环境建模自治区普通高校重点实验室,新疆 乌鲁木齐 830046
    2.新疆大学绿洲生态教育部重点实验室,新疆 乌鲁木齐 830046
    3.自然资源部中亚地理信息技术开发应用工程技术创新中心,新疆 乌鲁木齐 830046
    4.新疆阿克苏地区渭干河流域管理处,新疆 阿克苏 842000
赵巧珍(1991-),女,硕士研究生,主要从事干旱区环境演变与遥感应用研究. E-mail: zhaoqz1026@163.com

收稿日期: 2021-11-22

  修回日期: 2022-01-19

  网络出版日期: 2022-08-11

基金资助

国家自然科学基金(41961059);新疆维吾尔自治区自然科学基金重点项目(2021D01D06)

Exploring the application of MODIS and Landsat spatiotemporal fusion images in soil salinization: A case of Ugan River-Kuqa River Delta Oasis

  • Qiaozhen ZHAO ,
  • Jianli DING ,
  • Lijing HAN ,
  • Xiaoye JIN ,
  • Jianping HAO
Expand
  • 1. Key Laboratory of Smart City and Environmental Modeling of Autonomous Region Universities, School of Resources and Environmental Sciences, Xinjiang University, Urumqi 830046, Xinjiang, China
    2. Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi 830046, Xinjiang, China
    3. Ministry of Natural Resources, Central Asia Geographic Information Technology Development and Application Engineering Technology Innovation Center, Urumqi 830046, Xinjiang, China
    4. Ugan River Basin Management Office, Aksu Prefecture, Xinjiang, Aksu 842000, Xinjiang, China

Received date: 2021-11-22

  Revised date: 2022-01-19

  Online published: 2022-08-11

摘要

土壤盐渍化的遥感监测依赖于高时空分辨率影像,但受经费预算、卫星回访周期及天气的影响,高时空分辨率的遥感影像较难获取,这就限制了根据采样时间来获取对应时期遥感影像进行土壤盐渍化监测反演的应用。为此,提出融合MODIS和Landsat影像生成高时空分辨率影像来提取土壤盐渍化信息,为时空影像进行土壤盐渍化监测研究提供数据参考。以渭干河—库车河绿洲为研究区,利用增强型时空自适应融合率反射模型(Enhanced spatial and temporal adaptive reflectance fusion model,ESTARFM)和灵活的时空融合模型(Flexible spatiotemporal data fusion,FSDAF),对MODIS和Landsat影像进行时空融合,并基于融合影像数据构建了关于土壤电导率(EC)的随机森林(RF)预测模型,对比分析时空融合影像应用于土壤盐渍化遥感监测的适用性。结果表明:ESTARFM融合影像的特征波段反射率与Landsat验证影像对应波段反射率一致性决定系数R2(Red)=0.8066、R2(SWIR2)=0.8444;FSDAF融合影像的特征波段与Landsat验证影像对应波段反射率一致性决定系数R2(Red)=0.6999、R2(SWIR2)=0.7493;基于ESTARFM融合影像构建的EC值预测模型精度最高,R2=0.9268,基于FSDAF融合影像构建的EC值预测模型精度良好,R2=0.8987,基于验证影像构建的EC值预测模型R2=0.9103; ESTARFM模型的融合精度高于FSDAF模型,并且基于融合影像构建的EC值预测模型效果良好。

本文引用格式

赵巧珍 , 丁建丽 , 韩礼敬 , 金晓叶 , 郝建平 . MODIS和Landsat时空融合影像在土壤盐渍化监测中的适用性研究——以渭干河—库车河三角洲绿洲为例[J]. 干旱区地理, 2022 , 45(4) : 1155 -1164 . DOI: 10.12118/j.issn.1000-6060.2021.551

Abstract

Remote sensing monitoring of soil salinization relies on high spatiotemporal resolution images, which are difficult to obtain due to high cost, revisit period of the satellite, and weather effects. The spatiotemporal fusion technology of remote sensing images has the advantages of low cost and good reliability and has been widely used in several studies, such as vegetation growth, flood monitoring, and temperature monitoring. This study investigates the effectiveness of spatiotemporal fusion images in soil salinization monitoring at Ugan River-Kuqa River Delta Oasis, south Xinjiang, China. An enhanced spatial and temporal adaptive reflectance fusion model and flexible spatiotemporal data fusion model were employed to fuse MODIS and Landsat images and generate high spatiotemporal resolution images. A random forest prediction model for soil conductivity (EC) was created using the fusion images. Furthermore, the precision of both models was evaluated. Results show that the fusion images made by the ESTARFM and FSDAF models have high spatial resolution and good uniformity compared with the verification image. Verification revealed the reliability of the fusion results from the ESTARFM algorithm, R2(Red)=0.8066 and R2(SWIR2)=0.8444, and the FSDAF algorithm, R2(Red)=0.6999 and R2(SWIR2)=0.7493. The EC prediction model created using the ESTARFM fusion images had the best accuracy with R2 of 0.9268. Meanwhile, the R2 of the EC prediction model constructed from FSDAF was 0.8987 and that constructed based on Landsat verification images was 0.9103. This finding showed that spatiotemporal fusion technology has good application in the remote sensing monitoring of soil salinization. Comparison of the salinity prediction results from the two spatiotemporal image fusion models revealed that the ESTARFM model is suitable for salinity prediction.

参考文献

[1] 吴亚坤, 刘广明, 苏里坦, 等. 多源数据的区域土壤盐渍化精确评估[J]. 光谱学与光谱分析, 2018, 38(11): 3528-3533.
[1] [ Wu Yakun, Liu Guangming, Su Litan, et al. Accurate evaluation of regional soil salinization using multi-source data[J]. Spectroscopy and Spectral Analysis, 2018, 38(11): 3528-3533. ]
[2] Han L J, Ding J L, Zhang J Y, et al. Precipitation events determine the spatiotemporal distribution of playa surface salinity in arid regions: Evidence from satellite data fused via the enhanced spatial and temporal adaptive reflectance fusion model[J]. Catena, 2021, 206: 105546, doi: 10.1016/J.CATENA.2021.105546.
[3] Zhu X L, Chen J, Gao F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010, 114(11): 2610-2623.
[4] 黄波. 时空遥感影像融合研究的进展与趋势[J]. 四川师范大学学报(自然科学版), 2020, 43(4): 427-434, 424.
[4] [ Huang Bo. Research progress and trend of spatial and temporal remote sensing image fusion[J]. Journal of Sichuan Normal University (Natural Science Edition), 2020, 43(4): 427-434, 424. ]
[5] Hilker T, Wulder M A, Coops N C, et al. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS[J]. Remote Sensing of Environment, 2009, 113(8): 1613-1627.
[6] Zhao Y Q, Huang B, Song H H. A robust adaptive spatial and temporal image fusion model for complex land surface changes[J]. Remote Sensing of Environment, 2018, 208: 42-62.
[7] Meng L H, Liu H J, Ustin S L, et al. Assessment of FSDAF accuracy on cotton yield estimation using different MODIS products and landsat based on the mixed degree index with different surroundings[J]. Sensors (Basel, Switzerland), 2021, 21(15): 5184, doi: 10.3390/S21155184.
[8] 马倩倩, 董博, 许旺旺, 等. 干旱区耕地质量等级评价及土壤养分与盐渍化的分析研究--以民勤绿洲为例[J]. 干旱区地理, 2021, 44(2): 514-524.
[8] [ Ma Qianqian, Dong Bo, Xu Wangwang, et al. Evaluation of cultivated land quality and analysis of soil nutrients and in arid areas: Taking Minqin Oasis as an example[J]. Arid Land Geography, 2021, 44(2): 514-524. ]
[9] 柳菲, 陈沛源, 于海超, 等. 民勤绿洲不同土地利用类型下土壤水盐的空间分布特征分析[J]. 干旱区地理, 2020, 43(2): 406-414.
[9] [ Liu Fei, Chen Peiyuan, Yu Haichao, et al. Spatial distribution characteristics of soil water and salt under different land use types in Minqin Oasis[J]. Arid Land Geography, 2020, 43(2): 406-414. ]
[10] 张晓川, 王杰. 基于遥感时空融合的升金湖湿地生态水文结构分析[J]. 遥感技术与应用, 2020, 35(5): 1109-1117.
[10] [ Zhang Xiaochuan, Wang Jie. The analysis of eco-hydrological structure of Shengjin Lake Wetland based on spatial and temporal fusion technology of remote sensing[J]. Remote Sensing Technology and Application, 2020, 35(5): 1109-1117. ]
[11] 李超, 李雪梅, 田亚林, 等. 温度植被干旱指数时空融合模型对比[J]. 遥感技术与应用, 2020, 35(4): 832-844.
[11] [ Li Chao, Li Xuemei, Tian Yalin, et al. Time and space fusion model comparison of temperature vegetation drought index[J]. Remote Sensing Technology and Application, 2020, 35(4): 832-844. ]
[12] 石晨烈, 王旭红, 张萌. 3种时空融合算法在洪水监测中的适用性研究[J]. 国土资源遥感, 2020, 32(2): 111-119.
[12] [ Shi Chenlie, Wang Xuhong, Zhang Meng. Analysis of the applicability of three remote sensing spatiotemporal fusion algorithms in flood monitoring[J]. Remote Sensing for Land and Resources, 2020, 32(2): 111-119. ]
[13] 王爽, 王承武, 张飞云. 基于FSDAF模型的干旱区典型绿洲城市夏季地表热岛效应时空演变研究[J]. 干旱区地理, 2021, 44(1): 118-130.
[13] [ Wang Shuang, Wang Chengwu, Zhang Feiyun. Spatiotemporal variations of the summer daytime surface urban heat island of oasis city in arid area based on FSDAF model[J]. Arid Land Geography, 2021, 44(1): 118-130. ]
[14] 何珍珍, 王宏卫, 杨胜天, 等. 渭干河-库车河绿洲景观生态安全时空分异及格局优化[J]. 生态学报, 2019, 39(15): 5473-5482.
[14] [ He Zhenzhen, Wang Hongwei, Yang Shengtian, et al. Spatial-temporal differentiation and pattern optimization of land scape ecological security in the Ugan-Kuqa River oasis[J]. Acta Ecologica Sinica, 2019, 39(15): 5473-5482. ]
[15] 马国林, 丁建丽, 韩礼敬, 等. 基于变量优选与机器学习的干旱区湿地土壤盐渍化数字制图[J]. 农业工程学报, 2020, 36(19): 124-131.
[15] [ Ma Guolin, Ding Jianli, Han Lijing, et al. Digital mapping of soil salinization in arid area wetland based on variable optimized selection and machine learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 124-131. ]
[16] Lobell D B, Lesch S M, Corwin D L, et al. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI[J]. Journal of Environmental Quality, 2010, 39(1): 35-41.
[17] 郑裕东, 徐云成, 严海军, 等. 基于近地遥感系统的小麦玉米冠层RVI和NDVI获取影响因素分析[J]. 光谱学与光谱分析, 2021, 41(8): 2578-2585.
[17] [ Zheng Yudong, Xu Yuncheng, Yan Haijun, et al. Analysis of influencing factors in wheat/maize canopy RVI and NDVI acquisition using ground-based remote sensing system[J]. Spectroscopy and Spectral Analysis, 2021, 41(8): 2578-2585. ]
[18] 魏阳, 丁建丽, 王飞. 基于Landsat OLI的绿洲灌区土壤盐度最优预测尺度分析[J]. 中国农业科学, 2017, 50(15): 2969-2982.
[18] [ Wei Yang, Ding Jianli, Wang Fei. Optimal scale analysis of soil salinity prediction in oasis irrigated area of arid land based on Landsat OLI[J]. Scientia Agricultura Sinica, 2017, 50(15): 2969-2982. ]
[19] 王飞, 丁建丽, 魏阳, 等. 基于Landsat系列数据的盐分指数和植被指数对土壤盐度变异性的响应分析--以新疆天山南北典型绿洲为例[J]. 生态学报, 2017, 37(15): 5007-5022.
[19] [ Wang Fei, Ding Jianli, Wei Yang, et al. Sensitivity analysis of soil salinity and vegetation indices to detect soil salinity variation by using Landsat series images: Applications in different oases in Xinjiang, China[J]. Acta Ecologica Sinica, 2017, 37(15): 5007-5022. ]
[20] 陈红艳, 赵庚星, 陈敬春, 等. 基于改进植被指数的黄河口区盐渍土盐分遥感反演[J]. 农业工程学报, 2015, 31(5): 107-114.
[20] [ Chen Hongyan, Zhao Gengxing, Cheng Jingchun, et al. Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 107-114. ]
[21] 冯娟, 丁建丽, 杨爱霞, 等. 干旱区土壤盐渍化信息遥感建模[J]. 干旱地区农业研究, 2018, 36(1): 266-273.
[21] [ Fen Juan, Ding Jianli, Yang Aixia, et al. Remote sensing modeling of soil salinization information in arid areas[J]. Agricultural Research in the Arid Areas, 2018, 36(1): 266-273. ]
[22] 樊彦国, 张维康, 刘敬一. 基于植被指数-盐分指数特征空间的黄河三角洲盐渍化遥感监测研究[J]. 山东农业科学, 2016, 48(5): 137-141.
[22] [ Fan Yanguo, Zhang Weikang, Liu Jingyi. Remote sensing monitoring model of soil salinization in the Yellow River Delta Zone based on vegetation index-salt index feature space[J]. Shandong Agricultural Sciences, 2016, 48(5): 137-141. ]
[23] 曹雷, 丁建丽, 玉米提·哈力克, 等. 基于国产高分一号卫星数据的区域土壤盐渍化信息提取与建模[J]. 土壤学报, 2016, 53(6): 1399-1409.
[23] [ Cao Lei, Ding Jianli, Halik Umut, et al. Extraction and modeling of regional soil salinization based on data from GF-1 satellite[J]. Acta Pedologica Sinica, 2016, 53(6): 1399-1409. ]
[24] Kamh G M E, Ismael B, Oguchi C T. Pore size distribution and wall side orientation controlling salt susceptibility index “SSI” and weathering rate of stratified pharaonic rock art[J]. Restoration of Buildings and Monuments, 2013, 19(5): 341-362.
[25] Sahana M, Rehman S, Patel P P, et al. Assessing the degree of soil salinity in the Indian Sundarban Biosphere Reserve using measured soil electrical conductivity and remote sensing data-derived salinity indices[J]. Arabian Journal of Geosciences, 2020, 13(24): 1289, doi: 10.1007/S12517-020-06310-W.
[26] Nguyen K A, Liou Y A, Tran H P, et al. Soil salinity assessment by using near-infrared channel and vegetation soil salinity index derived from Landsat 8 OLI data: A case study in the Tra Vinh Province, Mekong Delta, Vietnam[J]. Progress in Earth and Planetary Science, 2020, 7(1): 1-16.
[27] 马国林. 耦合多源传感器与机器学习算法的渭-库绿洲土壤盐分估测[D]. 乌鲁木齐: 新疆大学, 2021.
[27] [ Ma Guolin. Estimation of soil salinity in Weigan-Kuqa Oasis coupling multi-source sensors and machine learning algorithms[D]. Urumqi: Xinjiang University, 2021. ]
文章导航

/