气候与水文

内蒙古半干旱区蒸散估算和归因分析

  • 韩典辰 ,
  • 张方敏 ,
  • 陈吉泉 ,
  • 李云鹏 ,
  • 卢琦 ,
  • 卢燕宇
展开
  • 1.南京信息工程大学应用气象学院/江苏省农业气象重点实验室,江苏 南京 210044
    2.密歇根州立大学地理环境空间科学系全球变化观测中心,密歇根 东兰辛 MI48825
    3.内蒙古自治区生态与农业气象中心,内蒙古 呼和浩特 010051
    4.中国林科院荒漠化研究所,北京 100091
    5.中国林科院沙漠林业实验中心,北京 100091
    6.安徽省气象局气象科学研究所大气科学与卫星遥感安徽省重点实验室,安徽 合肥 230031
韩典辰(1997-),男,硕士,主要从事生态气象研究. E-mail: 20191208013@nuist.edu.cn

收稿日期: 2021-10-01

  修回日期: 2021-10-25

  网络出版日期: 2022-08-11

基金资助

科技部重点研发计划项目(2018YFC1506606);研究型业务公关项目(YJG202005)

Evapotranspiration of a semi-arid landscape in Inner Mongolia: Estimation and attribution

  • Dianchen HAN ,
  • Fangmin ZHANG ,
  • Jiquan CHEN ,
  • Yunpeng LI ,
  • Qi LU ,
  • Yanyu LU
Expand
  • 1. Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
    2. Department of Geography, Environment and Spatial Science and Center for Global Change and Earth Observation, Michigan State University, East Lansing MI48825, Michigan, USA
    3. Ecological and Agricultural Meteorological Center of Inner Mongolia Autonomous Region, Hohhot 010051, Inner Mongolia, China
    4. Desertification Research Institute, Chinese Academy of Forestry Sciences, Beijing 100091, China
    5. Desert Forestry Experimental Center, Chinese Academy of Forestry Sciences, Beijing 100091, China
    6. Auhui Institute of Meteorological Sciences, Auhui Province Key Laboratory of Atmospheric Science and Satellite Remote Sensing, Hefei 230031, Anhui, China

Received date: 2021-10-01

  Revised date: 2021-10-25

  Online published: 2022-08-11

摘要

蒸散(Evapotranspiration,ET)是生态系统水循环中的重要一环,决定了生态系统水分和热量传输。从区域尺度对蒸散及其蒸腾(Transpiration,T)和蒸发(Evaporation,E)组分进行量化,认识环境因素对其的影响机制,有助于合理利用、分配水资源,为研究气候变化对区域生态系统水文循环的影响提供参考。基于生态系统生产力模拟(Boreal ecosystem productivity simulator, BEPS)模型,验证模型在研究区域的适用性,量化1981—2018年内蒙古半干旱区的ET及其组分的变化情况,并对其进行归因分析。结果表明:经不同数据验证,BEPS模型计算结果能够精确反应研究区域ET及其组分的分布情况和变化趋势。1981—2018年研究区草地、农田和森林多年平均ET分别为278.22 mm、362.50 mm和308.81 mm。ET和ET多年呈显著上升趋势,上升速率分别为0.42 mm·a-1、0.63 mm·a-1和1.05 mm·a-1。ET与T在全区域内空间分布格局相似,与E相反,ET年际波动主要受到T年际波动的影响。综合影响因子的变化和ET、ET对因子的敏感性,研究区域草地和农田T和ET以及森林的ET主要受到饱和水汽压差(VPD)和平均气温(TEMP)变化的控制。农田和森林归一化植被指数(Normalized difference vegetable index, NDVI)都呈减小趋势,但森林环境T对NDVI的变化更加敏感,因此负贡献更大。

本文引用格式

韩典辰 , 张方敏 , 陈吉泉 , 李云鹏 , 卢琦 , 卢燕宇 . 内蒙古半干旱区蒸散估算和归因分析[J]. 干旱区地理, 2022 , 45(4) : 1071 -1081 . DOI: 10.12118/j.issn.1000-6060.2021.446

Abstract

Evapotranspiration (ET) is the most important flux term in the ecosystem water budget because it is related to water and heat exchange between ecosystems and the atmosphere. Quantifying the magnitude and dynamics of ET and its components include evaporation (E) and transpiration (T) at regional scales and deriving a mechanistic understanding of the underline regulations is essential for managing water resources under the changing climate. On the basis of a mechanistic ecosystem model (BEPS), we estimated the magnitudes of ET and its components in the semi-arid region (40.16°-46.77°N and 110.33°-119.91°E) of Inner Mongolia, China from 1981 to 2018. Compared with different data, the BEPS could provide accurate estimates for changes in ET and its components by validating with ground measurements. The total average annual ET of grassland, cropland, and forests in the study area from 1981 to 2018 was 278.22 mm, 362.50 mm, and 308.81 mm, respectively. Over the study period, E, T, and ET increased at a rate of 0.42 mm·a-1, 0.63 mm·a-1, and 1.05 mm·a-1, respectively. Across the study region, we found that the spatial distribution patterns of T was opposite to that of E and similar to that of ET. From the interannual variation standpoint, the interannual fluctuations in ET were primarily influenced by those in T. Considering the changes in influencing factors and the sensitivities of the three fluxes, we concluded that T and ET of the grasslands and croplands and ET of forests were mainly controlled by vapor pressure deficit and air temperature. Although both cropland and forest normalized difference vegetation index (NDVI) showed decreasing trends, forest environmental T was more sensitive to changes in NDVI, thus receiving more negative influence than cropland.

参考文献

[1] Thornthwaite C W. An approach toward a rational classification of climate[J]. Geographical Review, 1948, 38(1): 55-94.
[2] Burba G G, Verma S B. Seasonal and interannual variability in evapotranspiration of native tallgrass prairie and cultivated wheat ecosystems[J]. Agricultural and Forest Meteorology, 2005, 135(1-4): 190-201.
[3] Li Z, Liu X, Niu T, et al. Ecological restoration and its effects on a regional climate: The source region of the Yellow River, China[J]. Environmental Science and Technology, 2015, 49(10): 5897-5904.
[4] 宁亚洲, 张福平, 冯起, 等. 基于SEBAL模型的疏勒河流域蒸散发估算与灌溉效率评价[J]. 干旱区地理, 2020, 43(4): 928-938.
[4] [ Ning Yazhou, Zhang Fuping, Feng Qi, et al. Estimation of evapotranspiration in Shule River Basin based on SEBAL model and evaluation on irrigation efficiency[J]. Arid Land Geography, 2020, 43(4): 928-938. ]
[5] 黄建平, 季明霞, 刘玉芝, 等. 干旱半干旱区气候变化研究综述[J]. 气候变化研究进展, 2013, 9(1): 9-14.
[5] [ Huang Jianping, Ji Mingxia, Liu Yuzhi, et al. An overview of arid and semi-arid climate change[J]. Climate Change Research, 2013, 9(1): 9-14. ]
[6] 李鹏飞, 孙小明, 赵昕奕. 近50年中国干旱半干旱地区降水量与潜在蒸散量分析[J]. 干旱区资源与环境, 2012, 26(7): 57-63.
[6] [ Li Pengfei, Sun Xiaoming, Zhao Xinyi. Analysis of precipitation and potential evapotranspiration in arid and semi-arid area of China in recent 50 years[J]. Journal of Arid Land Resources and Environment, 2012, 26(7): 57-63. ]
[7] 吴国栋, 薛河儒, 刘廷玺. 1961-2016年锡林河流域降水及平均气温变化特征及趋势[J]. 干旱区地理, 2021, 44(3): 769-777.
[7] [ Wu Guodong, Xue Heru, Liu Tingxi. Change characteristics and trends of precipitation and average temperature in the Xilinhe River Basin from 1961 to 2016[J]. Arid Land Geography, 2021, 44(3): 769-777. ]
[8] Zhang K, John S, Kimball, et al. A review of remote sensing based actual evapotranspiration estimation[J]. Wiley Interdisciplinary Reviews: Water, 2016, 3(6): 834-853.
[9] 代鹏超, 牛苏娟, 毋兆鹏, 等. 新疆精河流域实际蒸散发时空变化特征[J]. 生态与农村环境学报, 2017, 33(7): 600-606.
[9] [ Dai Pengchao, Niu Sujuan, Wu Zhaopeng, et al. Temporal and spatial characteristics of actual evapotranspiration in Jinghe Watershed, Xinjiang[J]. Journal of Ecology and Rural Environment, 2017, 33(7): 600-606. ]
[10] 金学杰, 周剑. 基于SEBS模型和Landsat 8数据的黑河下游蒸散发时空特性分析[J]. 冰川冻土, 2017, 39(3): 572-582.
[10] [ Jin Xuejie, Zhou Jian. Analysis of spatial-temporal characteristics of evapotranspiration in the lower reaches of Heihe River based on surface energy balance system model and Landsat 8 data[J]. Journal of Glaciology and Geocryology, 2017, 39(3): 572-582. ]
[11] 蹇东南, 李修仓, 陶辉, 等. 基于互补相关理论的塔里木河流域实际蒸散发时空变化及影响因素分析[J]. 冰川冻土, 2016, 38(3): 750-760.
[11] [ Jian Dongnan, Li Xiucang, Tao Hui, et al. Spatio-temporal variation of actual evapotranspiration and its influence factors in the Tarim River Basin based on the complementary relationship approach[J]. Journal of Glaciology and Geocryology, 2016, 38(3): 750-760. ]
[12] 王思如, 雷慧闽, 段利民, 等. 气候变化对科尔沁沙地蒸散发和植被的影响[J]. 水利学报, 2017, 48(5): 535-544.
[12] [ Wang Siru, Lei Huimin, Duan Limin, et al. Simulated impacts of climate change on evapotranspiration and vegetation in Horqin Sandy Land[J]. Journal of Hydraulic Engineering, 2017, 48(5): 535-544. ]
[13] 赵水霞, 王文君, 吴英杰, 等. 近59a锡林郭勒草原旱灾驱动气候因子分析[J]. 干旱区研究, 2021, 38(3): 785-793.
[13] [ Zhao Shuixia, Wang Wenjun, Wu Yingjie, et al. Analysis of drought-driving climatic factors of Xilin Gol grassland in the past 59 years[J]. Arid Zone Research, 2021, 38(3): 785-793. ]
[14] 韩典辰, 张方敏, 陈吉泉, 等. 半干旱区草地站蒸散特征及其对气象因子和植被的响应[J]. 草地学报, 2021, 29(1): 166-173.
[14] [ Han Dianchen, Zhang Fangmin, Chen Jiquan, et al. Charcteristics of grassland evapotranspiration in semi-arid area and its responses to meteorological factors and vegetation[J]. Acta Agrestia Sinica, 2021, 29(1): 166-173. ]
[15] Liu J, Chen J M, Cihlar J, et al. A process-based Boreal ecosystem productivity simulator using remote sensing inputs[J]. Remote Sensing of Environment, 1997, 62: 158-175.
[16] Chen J M, Liu J, Cihlar J, et al. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications[J]. Ecological Modeling, 1999, 124: 99-119.
[17] Zhang F M, Ju W M, Shen S H, et al. Variations of terrestrial net primary productivity in East Asia[J]. Terrestrial Atmospheric and Oceanic Sciences, 2012, 23(4): 425-437.
[18] 张方敏, 居为民, 陈镜明, 等. 基于BEPS生态模型对亚洲东部地区蒸散量的模拟[J]. 自然资源学报, 2010, 25(9): 1596-1606.
[18] [ Zhang Fangmin, Ju Weimin, Chen Jingming, et al. Study on evapotranspiration in East Asia using the BEPS ecological model[J]. Journal of Natural Resources, 2010, 25(9): 1596-1606. ]
[19] Zhang F M, Ju W M, Shen S H, et al. How recent climate change influences water use efficiency in East Asia[J]. Theoretical and Applied Climatology, 2014, 116(1): 359-370.
[20] Chen J M, Chen X Y, Ju W M, et al. Distributed hydrological model for mapping evapotranspiration using remote sensing inputs[J]. Journal of Hydrology, 2005, 305: 15-39.
[21] Liu J, Chen J M, Cihlar J. Mapping evapotranspiration based on remote sensing: An application to Canada’s landmass[J]. Water Resources Research, 2003, 39: 1189-1200.
[22] 肇毓锋, 吴奇. 多时间尺度下Kriging与IDW空间插值方法的适用性研究[J]. 黑龙江水利科技, 2020, 48(11): 9-14.
[22] [ Zhao Yufeng, Wu Qi. Applicability of Kriging and IDW spatial interpolation methods on multiple time scales[J]. Heilongjiang Hydraulic Science and Technology, 2020, 48(11): 9-14. ]
[23] Liu Y, Liu R G, Chen J M. Retrospective retrieval of long-term consistent global leaf area index (1981-2011) from combined AVHRR and MODIS data[J]. Journal of Geophysical Research, 2012, 117: G04003, doi: 10.1029/2012JG002084.
[24] Brent N H. Characteristics of maximum-value composite images from temporal AVHRR data[J]. International Journal of Remote Sensing, 1986, 7(11): 1417-1434.
[25] Falge E, Baldocchi D, Olson R, et al. Gap filling strategies for defensible annual sums of net ecosystem exchange[J]. Agricultural and Forest Meteorology, 2001, 107(1): 43-69.
[26] 翁升恒, 张方敏, 冯妍, 等. 江淮流域稻麦轮作蒸散特征及其影响因子[J]. 节水灌溉, 2020(8): 27-33.
[26] [ Weng Shengheng, Zhang Fangmin, Feng Yan, et al. Characteristics of evapotranspiration and its influencing factors in rice-wheat rotation in the Jianghuai River Basin[J]. Water Saving Irrigation, 2020(8): 27-33. ]
[27] Miao H, Chen S, Chen J, et al. Cultivation and grazing altered evapotranspiration and dynamics in Inner Mongolia steppes[J]. Agricultural and Forest Meteorology, 2009, 149(11): 1810-1819.
[28] Tian D, Niu S, Pan Q, et al. Nonlinear responses of ecosystem carbon fluxes and water-use efficiency to nitrogen addition in Inner Mongolia grassland[J]. Functional Ecology, 2016, 30(3): 490-499.
[29] 毕彦杰, 赵晶, 赵勇, 等. 京津冀地区潜在蒸散量时空演变特征及归因分析[J]. 农业工程学报, 2020, 36(5): 130-140.
[29] [ Bi Yanjie, Zhao Jing, Zhao Yong, et al. Spatial-temporal variation characteristics and attribution analysis of potential evapotranspiration in Beijing-Tianjin-Hebei region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 130-140. ]
[30] Chen S, Chen J, Lin G, et al. Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types[J]. Agricultural and Forest Meteorology, 2009, 149(11): 1800-1809.
[31] Zheng Han, Yu Guirui, Wang Qiufeng, et al. Spatial variation in annual actual evapotranspiration of terrestrial ecosystems in China: Results from eddy covariance measurements[J]. Journal of Geographical Sciences, 2016(10): 1391-1411.
[32] Niu Z, He H, Zhu G, et al. A spatial-temporal continuous dataset of the transpiration to evapotranspiration ratio in China from 1981-2015[J]. Scientific Data, 2020, 7(1): 369, doi: 10.1038/s41597-020-00693-x.
[33] Chen Y, Lee G, Lee P, et al. Model analysis of grazing effect on above-ground biomass and above-ground net primary production of a Mongolian grassland ecosystem[J]. Journal of Hydrology, 2007, 333(1): 155-164.
[34] Hu Z, Yu G, Zhou Y, et al. Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model[J]. Agricultural & Forest Meteorology, 2009, 149(9): 1410-1420.
[35] Huang X, Hao Y, Wang Y, et al. Partitioning of evapotranspiration and its relation to carbon dioxide fluxes in Inner Mongolia steppe[J]. Journal of Arid Environments, 2010, 74(12): 1616-1623.
[36] Li X, Lin C J, Sun Z, et al. A simple and objective method to partition evapotranspiration into transpiration and evaporation at eddy-covariance sites[J]. Agricultural and Forest Meteorology, 2019, 265: 171-182.
[37] 牛忠恩, 胡克梅, 何洪林, 等. 2000-2015年中国陆地生态系统蒸散时空变化及其影响因素[J]. 生态学报, 2019, 39(13): 4697-4709.
[37] [ Niu Zhong’en, Hu Kemei, He Honglin, et al. The spatial-temporal patterns of evapotranspiration and its influencing factors in Chinese terrestrial ecosystem from 2000 to 2015[J]. Acta Ecologica Sinica, 2019, 39(13): 4697-4709. ]
[38] Liu S, Li S G, Yu G R, et al. Seasonal and interannual variations in water vapor exchange and surface water balance over a grazed steppe in central Mongolia[J]. Agricultural Water Management, 2010, 97(6): 857-864.
[39] Jiang Z, Yang Z, Zhang S, et al. Revealing the spatio-temporal variability of evapotranspiration and its components based on an improved Shuttleworth-Wallace model in the Yellow River Basin[J]. Journal of Environmental Management, 2020, 262: 110310, doi: 10.1016/j.jenvman.2020.110310.
[40] Xiao L R, Lu Q Q, He H L, et al. Estimation and analysis of the ratio of transpiration to evapotranspiration in forest ecosystems along the north-south transect of east China[J]. Journal of Geographical Sciences, 2019, 29(11): 1807-1822.
[41] Zhao J, Liang W, Yang Y T, et al. Separating vegetation greening and climate change controls on evapotranspiration trend over the Loess Plateau[J]. Scientific Reports, 2017, 7(1): 951-954.
[42] 赵晓涵, 张方敏, 韩典辰, 等. 内蒙古半干旱区蒸散特征及归因分析[J]. 干旱区研究, 2021, 38(6): 1614-1623.
[42] [ Zhao Xiaohan, Zhang Fangmin, Han Dianchen, et al. Evapotranspiration changes and its attribution in semi-arid regions of Inner Mongolia[J]. Arid Zone Research, 2021, 38(6): 1614-1623. ]
[43] Naama R Y, Dan Y, Gabriel S, et al. Dynamics of evapotranspiration partitioning in a semi-arid forest as affected by temporal rainfall patterns[J]. Agricultural and Forest Meteorology, 2012, 157: 77-85.
[44] Gokmen M, Vekerdy Z, Verhoef W, et al. Satellite-based analysis of recent trends in the ecohydrology of a semi-arid region[J]. Hydrology and Earth System Sciences, 2013, 17(10): 3779-3794.
文章导航

/