收稿日期: 2021-10-07
修回日期: 2021-12-27
网络出版日期: 2022-08-11
基金资助
国家自然科学基金重大专项(42041007-02);甘肃省高等学校产业支撑计划项目(2020C-39);甘肃省水利厅水资源费项目(2021-105)
Changes of runoff and precipitation in the upstream of Yellow River during the past 60 years
Received date: 2021-10-07
Revised date: 2021-12-27
Online published: 2022-08-11
为探究黄河上游径流量与降水量变化特征,基于唐乃亥、下河沿、头道拐3个水文站近60 a的降水量、径流量资料,采用线性倾向趋势检验、Mann-Kendall检验法(M-K趋势检验)、Spearman秩次相关检验、M-K突变检验、Pettitt非参数检验、有序聚类分析、累积距平法、双累积曲线等分析方法对比研究了黄河上游及上游不同子区域降水量和径流量的变化特征,并讨论了径流量对降水量的响应关系。结果表明:黄河上游降水量呈不显著增加趋势,在2003年发生突变,突变前后变化率为4.67%;径流量呈显著减少趋势,突变年份为1986年,突变前后变化率为35.34%。3个子区域年降水量变化趋势分别呈显著增加、不显著增加和显著减少趋势,径流量均呈减少趋势。以唐乃亥以上的Ⅰ区为基准区时,唐乃亥—下河沿所在的Ⅱ区降水量因素对径流量的影响达到25.08%,非降水量因素为74.92%,而下河沿—头道拐的Ⅲ区,降水量对径流量的影响为32.14%,非降水量因素为67.86%。研究结果对黄河流域水资源综合管理与科学配置具有参考意义。
成艺 , 武兰珍 , 刘峰贵 , 沈彦俊 . 黄河上游近60 a径流量与降水量变化特征研究[J]. 干旱区地理, 2022 , 45(4) : 1022 -1031 . DOI: 10.12118/j.issn.1000-6060.2021.452
In this research, linear trend test, M-K trend test, Spearman’s rank correlation test, M-K test, Pettitt’s nonparametric test, orderly clustering analysis, the cumulative departure method, and the double-mass curve were applied to study the precipitation and runoff variation characteristics of upstream of the Yellow River, China. Further, the relationship between runoff and precipitation is discussed. Results show an insignificant increasing trend in rainfall in the upstream of the Yellow River, while runoff exhibits a distinct decreasing trend. Both precipitation and runoff present a significant deflection point, whose change rate between before and after is 4.67% (2003) and 35.34% (1986), respectively. For the three subregions, subregion I: above Tangnaihai station, subregion II: from Tangnaihai to Xiaheyan, and subregion III: from Xiaheyan to Toudaoguai, rainfall presents a significant increasing trend, an insignificant increasing trend, and a significant decreasing trend. However, runoff, for all subregions, exhibits a significant decreasing trend. With subregion I taken as the baseline, the relative impact of precipitation on runoff in subregion II is 25.08%. Consequently, the nonprecipitation factors account for 74.92%. Similarly, the percentage for subregion III is 32.14% and 67.86%, respectively. This research will offer theoretical references for water resource management and planning.
[1] | 冉思红, 王晓蕾, 罗毅. 多模式预测气候变化及其对雪冰流域径流的影响[J]. 干旱区地理, 2021, 44(3): 807-818. |
[1] | [ Ran Sihong, Wang Xiaolei, Luo Yi. Predicting climate change and its impact on runoff in snow-ice basin with multi-climate models[J]. Arid Land Geography, 2021, 44(3): 807-818. ] |
[2] | 刘宇, 管子隆, 田济扬, 等. 近70a泾河流域径流变化及其驱动因素研究[J]. 干旱区地理, 2022, 45(1): 17-26. |
[2] | [ Liu Yu, Guan Zilong, Tian Jiyang, et al. Runoff change and its driving factors in Jinghe River Basin in recent 70 years[J]. Arid Land Geography, 2022, 45(1): 17-26. ] |
[3] | 孙思奥, 汤秋鸿. 黄河流域水资源利用时空演变特征及驱动要素[J]. 资源科学, 2020, 42(12): 2261-2273. |
[3] | [ Sun Si’ao, Tang Qiuhong. Spatiotemporal patterns and driving factors of water resources use in the Yellow River Basin[J]. Resources Science, 2020, 42(12): 2261-2273. ] |
[4] | 贾绍凤, 梁媛. 新形势下黄河流域水资源配置战略调整研究[J]. 资源科学, 2020, 42(1): 29-36. |
[4] | [ Jia Shaofeng, Liang Yuan. Suggestions for strategic allocation of the Yellow River water resources under the new situation[J]. Resources Science, 2020, 42(1): 29-36. ] |
[5] | 邓祥征, 杨开忠, 单菁菁, 等. 黄河流域城市群与产业转型发展[J]. 自然资源学报, 2021, 36(2): 273-289. |
[5] | [ Deng Xiangzheng, Yang Kaizhong, Shan Jingjing, et al. Urban agglomeration and industrial transformation and development in the Yellow River Basin[J]. Journal of Natural Resources, 2021, 36(2): 273-289. ] |
[6] | 刘华军, 乔列成, 孙淑惠. 黄河流域用水效率的空间格局及动态演进[J]. 资源科学, 2020, 42(1): 57-68. |
[6] | [ Liu Huajun, Qiao Liecheng, Sun Shuhui. Spatial distribution and dynamic change of water use efficiency in the Yellow River Basin[J]. Resources Science, 2020, 42(1): 57-68. ] |
[7] | 游进军, 王婷, 贾玲, 等. 黄河流域水资源供需合理调控方向与对策浅析[J]. 国土资源情报, 2021(4): 8-17. |
[7] | [ You Jinjun, Wang Ting, Jia Ling, et al. Supply-demand analysis of water resources and countermeasures in Yellow River Basin[J]. Land and Resources Information, 2021(4): 8-17. ] |
[8] | 保广裕, 乜虹, 戴升, 等. 黄河上游河源区不同量级降水量对径流量变化的影响[J]. 干旱区研究, 2021, 38(3): 704-713. |
[8] | [ Bao Guangyu, Nie Hong, Dai Sheng, et al. Research on effects of different precipitation magnitudes on runoff changes in the headwater region of the upper Yellow River[J]. Arid Zone Research, 2021, 38(3): 704-713. ] |
[9] | 魏伊宁, 李勋贵, 李芳. 黄河上游径流量丰枯空间分布特征及其影响因素[J]. 水资源保护, 2021, 37(6): 103-113. |
[9] | [ Wei Yining, Li Xungui, Li Fang. Spatial distribution characteristics and influencing factors of wet and dry of runoff in upper reaches of the Yellow River[J]. Water Resources Protection, 2021, 37(6): 103-113. ] |
[10] | 宁怡楠, 杨晓楠, 孙文义, 等. 黄河中游河龙区间径流量变化趋势及其归因[J]. 自然资源学报, 2021, 36(1): 256-269. |
[10] | [ Ning Yi’nan, Yang Xiaonan, Sun Wenyi, et al. The trend of runoff change and its attribution in the middle reaches of the Yellow River[J]. Journal of Natural Resources, 2021, 36(1): 256-269. ] |
[11] | 潘彬, 韩美, 倪娟. 黄河下游近50年径流量变化特征及影响因素[J]. 水土保持研究, 2017, 24(1): 122-127. |
[11] | [ Pan Bing, Han Mei, Ni Juan. Characteristics and influence factors of runoff variation in the lower reaches of the Yellow River in the last 50 years[J]. Reasearch of Soil and Water Conservation, 2017, 24(1): 122-127. ] |
[12] | 王未, 张永勇. 黄河流域径流量情势区域变化特征分析[J]. 水资源与水工程学报, 2020, 31(3): 59-65. |
[12] | [ Wang Wei, Zhang Yongyong. Analysis on regional variation characteristics of flow regimes in the Yellow River Basin[J]. Journal of Water Resources & Water Engineering, 2020, 31(3): 59-65. ] |
[13] | 王道席, 田世民, 蒋思奇, 等. 黄河源区径流量演变研究进展[J]. 人民黄河, 2020, 42(9): 90-95. |
[13] | [ Wang Daoxi, Tian Shimin, Jiang Siqi, et al. Research progress of the evolution of runoff in the source area of the Yellow River[J]. Yellow River, 2020, 42(9): 90-95. ] |
[14] | 张金萍, 肖宏林. 黄河流域灌区农业用水研究发展历程与展望[J]. 灌溉排水学报, 2020, 39(10): 9-17. |
[14] | [ Zhang Jinping, Xiao Honglin. Past, current and future prospect for research on agricultural water use in irrigation districts in the Yellow River Basin[J]. Journal of Irrigation and Drainage, 2020, 39(10): 9-17. ] |
[15] | Peng S Z, Ding Y X, Wen Z M, et al. Spatiotemporal change and trendan alysis of potential evapotranspiration over the Loess Plateau of China during 2011-2100[J]. Agricultural and Forest Meteorology, 2017, 233: 183-194. |
[16] | 刘希胜, 李其江, 段水强, 等. 黄河源径流量演变特征及其对降水量的响应[J]. 中国沙漠, 2016, 36(6): 1721-1730. |
[16] | [ Liu Xisheng, Li Qijiang, Duan Shuiqiang, et al. Runoff change and responses to precipitation in the source regions of the Yellow River[J]. Journal of Desert Research, 2016, 36(6): 1721-1730. ] |
[17] | 商沙沙, 廉丽姝, 马婷, 等. 近54 a中国西北地区气温和降水量的时空变化特征[J]. 干旱区研究, 2018, 35(1): 68-76. |
[17] | [ Shang Shasha, Lian Lishu, Ma Ting, et al. Spatiotemporal variation of temperature and precipitation in northwest China in recent 54 years[J]. Arid Zone Research, 2018, 35(1): 68-76. ] |
[18] | 蔡俐辰, 李志威, 游宇驰, 等. 1956-2016年拉萨河径流量变化及影响因素分析[J]. 水资源与水工程学报, 2021, 32(2): 90-96. |
[18] | [ Cai Lichen, Li Zhiwei, You Yuchi, et al. Analysis of runoff changes in Lhasa River from 1956 to 2016 and the influencing factors[J]. Journal of Water Resources & Water Engineering, 2021, 32(2): 90-96. ] |
[19] | 商滢, 江竹. 黄河源区降水径流变化特征及响应分析[J]. 中国农村水利水电, 2021(2): 106-112. |
[19] | [ Shang Ying, Jiang Zhu. Characteristics and response analysis of precipitation and runoff in the source area of the Yellow River[J]. China Rural Water and Hydropower, 2021(2): 106-112. ] |
[20] | Commission of the European Community. Applications of statistical techiques: Proceedings of an autumn school organ[M]. Berlin: Springer, 1995. |
[21] | 白君瑞, 徐宗学, 班春广, 等. 基于Z指数的雅鲁藏布江流域径流丰枯变化及其特征分析[J]. 北京师范大学学报(自然科学版), 2019, 55(6): 715-723. |
[21] | [ Bai Junrui, Xu Zongxue, Ban Chunguang, et al. Runoff variation and characteristics in Yarlung Zangbo River by Z-index[J]. Journal of Beijing Normal University (Natural Science Edition), 2019, 55(6): 715-723. ] |
[22] | 黄星, 陈伏龙, 赵琪, 等. 新疆和田河径流演变特征及其影响因素分析[J]. 灌溉排水学报, 2021, 40(4): 88-96. |
[22] | [ Huang Xing, Chen Fulong, Zhao Qi, et al. Change in runoff in Hotan River in Xinjiang and its determinants[J]. Journal of Irrigation and Drainage, 2021, 40(4): 88-96. ] |
[23] | 吴子怡, 谢平, 桑燕芳, 等. 水文序列跳跃变异点的滑动相关系数识别方法[J]. 水利学报, 2017, 48(12): 1473-1481, 1489. |
[23] | [ Wu Ziyi, Xie Ping, Sang Yanfang, et al. Moving correlation coefficient-based method for the detection of change-points in hydrological time series[J]. Journal of Hydraulic Engineering, 2017, 48(12): 1473-1481, 1489. ] |
[24] | 张献志, 汪向兰, 王春青, 等. 黄河源区气象水文序列突变点诊断[J]. 人民黄河, 2020, 42(11): 22-26. |
[24] | [ Zhang Xianzhi, Wang Xianglan, Wang Chunqing, et al. Diagnosis of abrupt change point of the meteorological and hydrological series in the source area of the Yellow River[J]. Yellow River, 2020, 42(11): 22-26. ] |
[25] | 楚楚, 任立新. 黄河源区2018年洪水特性分析[J]. 人民黄河, 2020, 42(增刊2): 14-16. |
[25] | [ Chu Chu, Ren Lixin. Analysis of flood characteristics in the source area of the Yellow River in 2018[J]. Yellow River, 2020, 42(Suppl. 2): 14-16. ] |
[26] | 古力米热·哈那提, 张音, 苏里坦, 等. 季节性冻土水热对融雪及气温的响应[J]. 干旱区地理, 2021, 44(4): 889-896. |
[26] | [ Hanati Gulimire, Zhang Yin, Su Litan, et al. Response of water and heat of seasonal frozen soil to snow melting and air temperature[J]. Arid Land Geography, 2021, 44(4): 889-896. ] |
[27] | 黄荣辉, 周德刚. 气候变化对黄河径流以及源区生态和冻土环境的影响[J]. 自然杂志, 2012, 34(1): 1-9. |
[27] | [ Huang Ronghui, Zhou Degang. The impact of climate change on the runoff of the Yellow River and ecosystem and frozen soil in its source area[J]. Chinese Journal of Nature, 2012, 34(1): 1-9. ] |
/
〈 |
|
〉 |