地表过程研究

兰州新区浅层地温能赋存条件及土壤源热泵系统适宜性分析

  • 范斌 ,
  • 丁宏伟 ,
  • 张霖鑫 ,
  • 张凌鹏 ,
  • 张永军
展开
  • 1.甘肃省地矿局第二地质矿产勘查院,甘肃 兰州 730020
    2.甘肃省地质矿产勘查开发局,甘肃 兰州 730000
    3.甘肃省地质环境监测院,甘肃 兰州 730050
    4.甘肃省地下水工程及地热资源重点实验室,甘肃 兰州 730050
范斌(1986-),男,硕士,高级工程师,主要从事地热地质、水文地质等方面的研究. E-mail: 362428520@qq.com

收稿日期: 2021-08-08

  修回日期: 2021-12-19

  网络出版日期: 2022-05-31

基金资助

甘肃省职工技术创新补助资金项目(201912);甘肃省地下水工程及地热资源重点实验室开放基金项目(20190512)

Occurrence conditions of shallow geothermal energy and suitability analysis of soil source heat pump system in Lanzhou New District

  • Bin FAN ,
  • Hongwei DING ,
  • Linxin ZHANG ,
  • Lingpeng ZHANG ,
  • Yongjun ZHANG
Expand
  • 1. The Second Institute of Geology and Minerals Exploration, Gansu Provincial Bureau of Geology and Minerals Exploration and Development, Lanzhou 730020, Gansu, China
    2. Gansu Provincial Bureau of Geology and Minerals Exploration and Development, Lanzhou 730000, Gansu, China
    3. Gansu Geological Environment Monitoring Institute, Lanzhou 730050, Gansu, China
    4. Gansu Provincial Key Laboratory of Groundwater Engineering and Geothermal Resources, Lanzhou 730050, Gansu, China

Received date: 2021-08-08

  Revised date: 2021-12-19

  Online published: 2022-05-31

摘要

浅层地温能的开发利用有助于优化区域能源结构、节约常规化石能源、减少CO2排放。为掌握兰州新区浅层地温能的适宜性特点,对该类资源的开发规划和政府决策提供科学依据,以兰州新区建成区和规划区为研究对象,在分析区内浅层地温能赋存条件的基础上,依据掌握的多年实际勘查资料和测试数据,通过综合运用改进的层次分析法、综合指数法,对兰州新区440 km2的区域进行了土壤源热泵系统适宜性评价分析。结果表明:(1) 兰州新区拥有较为优异的浅层地温能赋存条件,区内地层结构简单且分布稳定,岩土体综合热导率、比热容、地温梯度均较高,十分有利于土壤源热泵系统的应用;而受到含水层富水性弱、水质差等因素的影响,地下水源热泵系统适宜性差。(2) 基于层次分析法建立的适宜性评价模型共划分3个属性准则和7个要素指标,采用指数标度分别构建了各层次的判断矩阵,并全部高精度通过一致性检验,同时优化了各要素参数的无量纲化方法,构建的评价模型更符合实际。(3) 研究区内对于土壤源热泵适宜性影响较大的要素主要是平均热导率和地温梯度。评价显示兰州新区土壤源热泵系统适宜、较适宜区总面积359.46 km2,占评价区总面积的81.70%,主要分布于秦王川盆地平原区,其余丘陵山区地带不适宜土壤源热泵系统的建设。评价结果对兰州新区乃至其他地质条件类似地区土壤源热泵系统的开发利用规划具有指导意义。

本文引用格式

范斌 , 丁宏伟 , 张霖鑫 , 张凌鹏 , 张永军 . 兰州新区浅层地温能赋存条件及土壤源热泵系统适宜性分析[J]. 干旱区地理, 2022 , 45(3) : 836 -846 . DOI: 10.12118/j.issn.1000-6060.2021.355

Abstract

Exploitation of shallow geothermal energy can optimize regional energy structure, save fossil fuel resources, and reduce carbon dioxide emissions. Understanding the subsurface characteristics which determine the suitability of an area for shallow geothermal energy is essential to provide a scientific basis for development planning and government decision-making. This study examines the conditions for shallow geothermal energy in both the existing built-up area and planned area of Lanzhou New District (440 km2 in total) in Gansu Province of northwest China, based on many years’ actual exploration and test data. An objective evaluation of the applicability of soil source heat pump (SSHP) systems was undertaken using an improved analytic hierarchy process (AHP) and the comprehensive index method. The results are that: (1) Lanzhou New District has generally excellent conditions for shallow geothermal energy utilizing SSHP systems. Specifically, the area has a simple and stable stratigrafic structure, high thermal conductivity, high specific heat capacity, and relatively high geothermal gradient. However, there are some unfavorable factors for developping groundwater source heat pump systems in the district, include a weak water-rich property aquifer and poor water quality. (2) The suitability evaluation model is based on an AHP divided into three attribute criteria and seven element indexes. This approach avoids some discrepancies inherent in a traditional judgement matrix constructed with the 1-9 scale proposed by Saaty. In this study, the judgement matrices for target layer and attribute criterion layer were constructed using an index scale, obtaining the weight of each factor to the target. Simultaneously, dimensionless parameters for each factor were optimized to make the model more efficient and give the evaluation result higher credibility. (3) The key factors affecting the suitability of SSHP are the average thermal conductivity and the geothermal gradient, which in this area are 1.807-2.676 W·m-1·K-1 and 0.30-0.40 ℃·km-1, respectively. The evaluation shows that “suitable” and “relatively suitable” areas for SSHP in the Lanzhou New District amount to 359.46 km2, which is 81.70% of the extent of the study area. Those suitable areas are chiefly located on the plains of Qinwangchuan Basin; other hilly and mountainous areas are less suitable for the installation of SSHP systems. Changing the traditional judgement matrix approach to this improved AHP-based evaluation process gives more accurate results more efficiently. The specific evaluation results of this study have clear practical value in guiding development planning for deployment of SSHP systems in Lanzhou New District and other comparable areas.

参考文献

[1] 丁宏伟, 魏莉莉, 尹政, 等. 浅层地温能系统的国内外研究与应用现状综述[J]. 甘肃地质, 2016, 25(4): 61-68.
[1] [ Ding Hongwei, Wei Lili, Yin Zheng, et al. Research and application status of shallow geothermal energy system in domestic and foreign countries[J]. Gansu Geology, 2016, 25(4): 61-68. ]
[2] 廖汉光. 地源热泵在欧美国家的发展概况[J]. 工程建设与设计, 2007, 12(3): 6-10.
[2] [ Liao Hanguang. Ground source heat pump in the development general situation of western countries[J]. Construction & Design for Project, 2007, 12(3): 6-10. ]
[3] 卫万顺, 李宁波, 冉伟彦, 等. 中国浅层地温能资源[M]. 北京: 中国大地出版社, 2010.
[3] [ Wei Wanshun, Li Ningpo, Ran Weiyan, et al. Shallow geothermal energy resources in China[M]. Beijing: China Land Press, 2010. ]
[4] Rollins K M, Gerber T M, Lane J D, et al. Lateral resistance of a full-scale pile group in liquefied sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(1): 115-121.
[5] McCullough N J, Dickenson S E. The behavior of piles in sloping rock fill at marginal wharves[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(1): 1-10.
[6] 方肇洪, 刁乃仁, 宿登超, 等. 竖直型埋管地源热泵空调系统的设计与安装[M]. 北京: 中国建筑出版社, 2001.
[6] [ Fang Zhaohong, Diao Nairen, Su Dengchao, et al. Design and installation of vertical self type ground source heat pump air conditioning system[M]. Beijing: China Construction Press, 2001. ]
[7] 卫万顺, 郑桂森, 栾英波. 北京平原区浅层地温场特征及其影响因素研究[J]. 中国地质, 2010, 37(6): 1733-1739.
[7] [ Wei Wanshun, Zheng Guisen, Luan Yingbo. Characteristics and influencing factors of the shallow geothermal field in Beijing plain area[J]. Geology in China, 2010, 37(6): 1733-1739. ]
[8] 栾英波, 郑桂森, 卫万顺. 浅层地温能资源开发利用发展综述[J]. 地热能, 2013(5): 21-24.
[8] [ Luan Yingbo, Zheng Guisen, Wei Wanshun. Development of shallow geothermal energy resources[J]. Geothermal Energy, 2013(5): 21-24. ]
[9] 韩再生, 冉伟彦, 佟红兵, 等. 浅层地热能勘查评价[J]. 中国地质, 2007, 34(6): 1115-1121.
[9] [ Han Zaisheng, Ran Weiyan, Tong Hongbing, et al. Exploration and evaluation of shallow geothermal energy[J]. Geology in China, 2007, 34(6): 1115-1121. ]
[10] 赵军. 地源热泵技术与建筑节能应用[M]. 北京: 中国建筑工业出版社, 2007.
[10] [ Zhao Jun. Ground source heat pump technology and building energy saving application[M]. Beijing: China Architecture Publishing & Media Co. Ltd., 2007. ]
[11] 李家伟. 土壤源热泵的理论与实践研究[M]. 北京: 科学出版社, 1995.
[11] [ Li Jiawei. Research on the theory and practice of soil source heat pump[M]. Beijing: Science Press, 1995. ]
[12] 陈信锐, 付强. 层次分析法在浅层地温能开发适宜性评价中的应用[J]. 工程技术研究, 2016(8): 38-39.
[12] [ Chen Xinrui, Fu Qiang. Application of analytic hierarchy process in suitability evaluation of shallow geothermal energy development[J]. Metallurgical Collections, 2016(8): 38-39. ]
[13] 范斌, 魏林森, 张凌鹏, 等. 兰州新区浅层地温能调查评价报告[R]. 兰州:甘肃省地矿局第二地质矿产勘查院, 2017.
[13] [ Fan Bin, Wei Linsen, Zhang Lingpeng, et al. Investigation and evaluation report of shallow geothermal energy in Lanzhou New District[R]. Lanzhou:The Second Institute of Geology and Minerals Exploration, Gansu Provincial Bureau of Geology and Minerals Exploration and Development, 2017. ]
[14] 魏林森, 范斌, 孟华, 等. 甘肃省中东部地区浅层地温能资源调查评价报告[R]. 兰州:甘肃省地矿局第二地质矿产勘查院, 2017.
[14] [ Wei Linsen, Fan Bin, Meng Hua, et al. Investigation and evaluation report on shallow geothermal energy resources in the middle and east of Gansu Province[R]. Lanzhou:The Second Institute of Geology and Minerals Exploration, Gansu Provincial Bureau of Geology and Minerals Exploration and Development, 2017. ]
[15] 魏林森, 范斌, 王婷, 等. 甘肃省浅层地温能资源开发利用评价报告[R]. 兰州:甘肃省地矿局第二地质矿产勘查院, 2017.
[15] [ Wei Linsen, Fan Bin, Wang Ting, et al. Evaluation report on exploitation and utilization of shallow geothermal energy resources in Gansu Province[R]. Lanzhou:The Second Institute of Geology and Minerals Exploration, Gansu Provincial Bureau of Geology and Minerals Exploration and Development, 2017. ]
[16] 吕跃进, 张维. 指数标度在AHP标度系统中的重要作用[J]. 系统工程学报, 2003, 18(5) : 452-456.
[16] [ Lü Yuejin, Zhang Wei. Kernel function of index scale in AHP scale system[J]. Journal of Systems Enginnering, 2003, 18(5): 452-456. ]
[17] 岳西杰, 葛玺祖, 王旭东, 等. 改进AHP模型在黄土高原沟壑区土壤质量评价中的应用--以陕西省长武县耕地为例[J]. 农业现代化研究, 2011, 32(2): 238-242, 256.
[17] [ Yue Xijie, Ge Xizu, Wang Xudong, et al. Application in soil quality evaluation on improved AHP (analytic hierarchy process) model of loessial gully region: A case of Changwu County in Shaanxi Province[J]. Research of Agricultural Modernization, 2011, 32(2): 238-242, 256. ]
[18] 许树柏. 实用决策方法--层次分析法原理[M]. 天津: 天津大学出版社, 1988.
[18] [ Xu Shubai. Practical decision method: Principle of analytic hierarchy process[M]. Tianjin: Tianjin University Press, 1988. ]
[19] 王连芬, 许树柏. 层次分析法引论[M]. 北京: 中国人民大学出版社, 1990.
[19] [ Wang Lianfen, Xu Shubai. Introduction of the analytical hierarchy process[M]. Beijing: China Renmin University Press, 1990. ]
[20] 中国系统工程学会层次分析法专业学组. 决策科学与层次分析法[M]. 青岛: 青岛海洋大学出版社, 1992.
[20] [ Professional Group of AHP of System Engineering Academy China. Decision science and AHP[M]. Qingdao: Publishing Company of Qingdao Ocean University, 1992. ]
[21] 马倩倩, 董博, 许旺旺, 等. 干旱区耕地质量等级评价及土壤养分与盐渍化的分析研究--以民勤绿洲为例[J]. 干旱区地理, 2021, 44(2): 514-524.
[21] [ Ma Qianqian, Dong Bo, Xu Wangwang, et al. Evaluation of cultivated land quality and analysis of soil nutrients and salinization in arid areas: Taking Minqin Oasis as an example[J]. Arid Land Geography, 2021, 44(2): 514-524. ]
[22] 赵力, 张炜, 刘楠, 等. 国家公园理念下区域生态旅游资源评价--以青海湖与祁连山毗邻区域为例[J]. 干旱区地理, 2021, 44(6): 1796-1809.
[22] [ Zhao Li, Zhang Wei, Liu Nan, et al. Evaluation of regional ecotourism resources under the concept of national park: Taking the adjacent area between the Qinghai Lake and the Qilian Mountain as an example[J]. Arid Land Geography, 2021, 44(6): 1796-1809. ]
[23] 王高峰, 杨强, 田运涛, 等. 泥石流易发性评价模型的构建--以白龙江流域石门乡羊汤河段为例[J]. 干旱区研究, 2019, 36(3): 761-770.
[23] [ Wang Gaofeng, Yang Qiang, Tian Yuntao, et al. Establishment of assessment model for debris flow susceptibility: A case study along the Yangtang River Reach in Shimen Township in the Bailong River Basin[J]. Arid Zone Research, 2019, 36(3): 761-770. ]
[24] 奥勇, 蒋嶺峰, 白召弟, 等. 基于格网 GIS 的黄河流域土地生态质量综合评价[J]. 干旱区地理, 2022, 45(1): 164-175.
[24] [ Ao Yong, Jiang Lingfeng, Bai Zhaodi, et al. Comprehensive evaluation of land ecological quality in the Yellow River Basin based on Grid-GIS[J]. Arid Land Geography, 2022, 45(1): 164-175. ]
[25] 孙传龙, 张卓栋, 邱倩倩, 等. 基于层次分析法的锡林郭勒草地景观系统风蚀危险性分析[J]. 干旱区地理, 2016, 39(5): 1036-1042.
[25] [ Sun Chuanlong, Zhang Zhuodong, Qiu Qianqian, et al. AHP based wind erosion risk analysis of the Xilinguole grassland landscape system[J]. Arid Land Geography, 2016, 39(5): 1036-1042. ]
[26] 段怡青, 解智强, 林美娜, 等. 基于指数标度AHP的地下空间开发适宜性评价[J]. 地下空间与工程学报, 2021, 17(增刊1): 8-15.
[26] [ Duan Yiqing, Xie Zhiqiang, Lin Meina, et al. Suitability evaluation of underground space development based on index scale-AHP[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(Suppl. 1): 8-15. ]
[27] 李清泉, 王小德, 张小谷, 等. 基于指数标度 AHP-模糊综合评价法的传统村落资源价值研究[J]. 山东林业科技, 2021, 17(2): 8-15.
[27] [ Li Qingquan, Wang Xiaode, Zhang Xiaogu, et al. The research of traditional village resources value with the method of index scale AHP and fuzzy romprehensive evaluation[J]. Journal of Shandong Forestry Science and Technology, 2021, 17(2): 8-15. ]
[28] 杨晓颖, 玉山, 都瓦拉, 等. 蒙古高原草原火灾风险评价研究[J]. 干旱区地理, 2021, 44(4): 1032-1044.
[28] [ Yang Xiaoying, Yu shan, Du wala, et al. Risk assessment of grassland fire on the Mongolian Plateau[J]. Arid Land Geography, 2021, 44(4): 1032-1044. ]
[29] 闫佰忠, 孙剑, 王昕洲, 等. 基于GIS-FAHP的石家庄市地下水源热泵适宜性分区[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1172-1181.
[29] [ Yan Baizhong, Sun Jian, Wang Xinzhou, et al. Suitablility zoning of groundwater source heat pump in Shijiazhuang based on GIS-FAHP[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(4): 1172-1181. ]
文章导航

/