古尔班通古特沙漠西南缘新月形沙丘内部沉积构造特征研究
收稿日期: 2021-09-13
修回日期: 2021-12-07
网络出版日期: 2022-05-31
基金资助
国家自然科学基金项目(42071011);福建师范大学地理科学学院研究生科研创新基金资助
Internal sedimentary structure of barchan dune in the southwest of Gurbantunggut Desert
Received date: 2021-09-13
Revised date: 2021-12-07
Online published: 2022-05-31
沙丘内部沉积构造保存了沙丘动力演变过程的重要信息。以古尔班通古特沙漠西南缘固定、半固定新月形沙丘区为研究区域,利用探地雷达在春、秋两季对固定、半固定新月形沙丘内部构造进行探测,获取了不同规模形态的固定、半固定新月形沙丘深约8 m的内部构造图像信息。通过图像增益处理、解译和对比分析表明:(1) 古尔班通古特沙漠固定、半固定新月形沙丘共有5种沙丘内部构造雷达相,即高倾角斜层理、楔状交错层理、上凸形交错层理、低倾角-近水平层理和块状层理,其中前4种主要分布在3~5 m的浅层,而块状层理主要分布在4~5 m以下的深度。(2) 高倾角斜层理、楔状交错层理主要分布在高大新月形沙丘(链)的迎风坡上部和丘顶地带,前者为背风坡前积层埋藏而成,反映高大新月形沙丘迎风坡上部和丘顶风沙活动较频繁,沙丘“固身缩顶”后埋藏的前积纹层因风蚀而出露,后者为迎风坡风蚀坑和风蚀槽中由风沙流充填而成的构造或在丘顶风向的季节性变化形成的构造。(3) 与灌丛沙丘相关的上凸形交错层理广泛分布在新月形沙丘的迎风坡中下部,在背风坡也有局部出现,表明灌丛沙丘在沙丘表层的风沙过程中占有重要地位;而深部的块状层理可能是早期风积层受到强烈的生物扰动,原生层理消失而产生。(4) 以上沙丘内部构造的类型与组合分布特点,反映了研究区新月形沙丘总体上趋于稳定或衰退状态,这与现代沙丘“固身缩顶”的地貌变化特征相一致。例如,迎风坡中上部和丘顶常见风蚀槽,背风坡因坡度变缓、前积层发育趋缓,现代风沙活动主要集中于新月形沙丘的上部和丘顶等。由此可见,研究区固定、半固定新月形沙丘内部构造及其组合分布特征异于流动新月形沙丘,也与半个多世纪以来北疆沙漠气候变暖变湿、平均风速减弱、植被盖度增加的区域自然地理环境变化趋势有一定的吻合性。
关键词: 探地雷达; 古尔班通古特沙漠; 固定、半固定新月形沙丘; 沉积构造; 环境意义
刘瑞 , 李志忠 , 靳建辉 , 解锡豪 , 邹晓君 , 马运强 . 古尔班通古特沙漠西南缘新月形沙丘内部沉积构造特征研究[J]. 干旱区地理, 2022 , 45(3) : 802 -813 . DOI: 10.12118/j.issn.1000-6060.2021.411
The internal sedimentary structure of aeolian dunes preserves important information on the dynamic evolution of dune morphology. In this study, we detected the internal structure of fixed and semi-fixed barchan dunes with various sizes and shapes using ground-penetrating radar in spring and autumn in southwest Gurbantunggut Desert in Xinjiang, China. The depth of the internal structure image information reached 8 m. Through image gain processing, interpretation, and comparative analysis, the following observations are made: (1) This detection revealed five radar facies of the internal structure of dunes: high-angle dipping oblique bedding, wedge cross-bedding, convex cross-bedding, low-angle to sub-horizontal bedding, and massive bedding. The first four bedding types are mainly distributed in shallow layers at 3-5 m, whereas the massive bedding is mainly distributed at depths below 4 m to 5 m. (2) High-angle dipping oblique bedding and wedge cross-bedding are mainly distributed in the upper part of the windward slope and the crest of the high barchan dune (chain). The former is buried in the fore-deposit of the leeward slope, reflecting the frequent sand drift activities on the upper and top of the windward slope of the tall barchan dune, and the buried fore-deposit lamina is exposed because of wind erosion after the dune is “fixed and reduced”. The latter is formed by the filling of wind and sand flow in the windward pit and wind erosion groove of the windward slope or the seasonal variation in the wind direction at the crest. (3) The convex cross-bedding of shrub dunes is widely distributed in the windward slope of barchan dunes, and there are local occurrences in the leeward slope, indicating that the shrub dunes are important in the process of wind and sand on the surface of dunes; the massive stratification may be caused by the disappearance of the original stratification caused by the strong bioturbation of the early aeolian stratification. (4) The sedimentary structural types and combined distribution characteristics reflect the overall stable or declining state of barchan dunes in the study area, which is consistent with the topography characteristics of modern dunes. For example, wind erosion troughs are common in the upper part of the windward slope and the crest, and the development of fore-deposit is slow. Modern sand drift activities are mainly concentrated in the upper part of the sand dune and the crest. Therefore, the internal structural characteristics of barchan dunes differ from mobile barchan dunes and are consistent with the change in the regional physical geography environment of northern Xinjiang characterized by the warming and wetting of the desert climate, the weakening of the average wind speed, and the increase in vegetation coverage.
[1] | Bagnold R A. The physics of blown sand and desert dunes[M]. London: Chapman and Hall Ltd, 1941: 265. |
[2] | Pye K, Tsoar H. Aeolian sand and sand dunes[M]. Berlin: Springer, 2009: 201-205. |
[3] | 吴正. 风沙地貌与治沙工程学[M]. 北京: 科学出版社, 2003: 144-151. |
[3] | [ Wu Zheng. Aeolian landform and sand control engineering[M]. Beijing: Science Press, 2003: 144-151. ] |
[4] | Xu Z, Mason J A, Lu H, et al. Crescentic dune migration and stabilization: Implications for interpreting paleo-dune deposits as paleoenvironmental records[J]. Journal of Geographical Sciences, 2017, 27(11): 1341-1358. |
[5] | Wiggs G F S. Dune morphology and dynamics[C]// Shroder J F. Treatise on Geomorphology. San Diego: Academic Press, 2013: 201-218. |
[6] | Dong Z, Wang X, Chen G. Monitoring sand dune advance in the Taklimakan Desert[J]. Geomorphology, 2000, 35(3): 219-231. |
[7] | El belrhiti H, Douady S. Equilibrium versus disequilibrium of barchan dunes[J]. Geomorphology, 2011, 125(4): 558-568. |
[8] | Fu T, Wu Y, Tan L, et al. Imaging the structure and reconstructing the development of a barchan dune using ground-penetrating radar[J]. Geomorphology, 2019, 341: 192-202. |
[9] | McKee E. Structures of dunes at White Sands National Monument, New Mexico (and a comparison with structures of dunes from other selected areas)[J]. Sedimentology, 1966, 7(1): 3-69. |
[10] | Bristow C S, Bailey S D, Lancaster N. The sedimentary structure of linear sand dunes[J]. Nature, 2000, 406(6791): 56-59. |
[11] | Jol H, Bristow C S. GPR in sediments: Advice on data collection, basic processing and interpretation, a good practice guide[J]. Geological Society of London Special Publications, 2003, 211(1): 9-27. |
[12] | 傅天阳, 李孝泽. 探地雷达在沙漠研究中的应用综述[J]. 中国沙漠, 2014, 34(1): 49-55. |
[12] | [ Fu Tianyang, Li Xiaoze. Application of ground penetrating radar to desert research[J]. Journal of Desert Research, 2014, 34(1): 49-55. ] |
[13] | 俞祁浩, 屈建军, 郑本兴, 等. 探地雷达在沙漠研究中的应用[J]. 中国沙漠, 2004, 24(3): 117-121. |
[13] | [ Yu Qihao, Qu Jianjun, Zheng Benxing, et al. Application of ground penetrating radar in desert research[J]. Journal of Desert Research, 2004, 24(3): 117-121. ] |
[14] | Gómez-Ortiz D, Martín-Crespo T, Rodríguez I, et al. The internal structure of modern barchan dunes of the Ebro River Delta (Spain) from ground penetrating radar[J]. Journal of Applied Geophysics, 2009, 68(2): 159-170. |
[15] | Bristow C S. Bounding surfaces in a barchan dune: Annual cycles of deposition? Seasonality or erosion by superimposed bedforms?[J]. Remote Sensing, 2019, 11(8): 965, doi: 10.3390/rs11080965. |
[16] | 冯莉莉. 中国北方沙漠化土地时空演变及其驱动力分析[D]. 北京: 中国林业科学研究院, 2017. |
[16] | [ Feng Lili. Spatial-temporal evolution of sandy desertification land and its driving forces in northern China[D]. Beijing: Chinese Academy of Forestry, 2017. ] |
[17] | 郭泽呈, 魏伟, 石培基, 等. 中国西北干旱区土地沙漠化敏感性时空格局[J]. 地理学报, 2020, 75(9): 1948-1965. |
[17] | [ Guo Zecheng, Shi Peiji, et al. Spatiotemporal changes of land desertification sensitivity in the arid region of northwest China[J]. Acta Geographica Sinica, 2020, 75(9): 1948-1965. ] |
[18] | 姚旭阳, 张明军, 张宇, 等. 中国西北地区气候转型的新认识[J/OL]. 干旱区地理. [2021-11-30]. http://kns.cnki.net/kcms/detail/65.1103.X.20211018.1255.004.html . |
[18] | [ Yao Xuyang, Zhang Mingjun, Zhang Yu, et al. New understanding of climate transition in northwest China[J/OL]. Arid Land Geography. [2021-11-30]. http://kns.cnki.net/kcms/detail/65.1103.X.20211018.1255.004.html . ] |
[19] | 朱震达, 吴正, 刘恕, 等. 中国沙漠概论(修订版)[M]. 北京: 科学出版社, 1980: 77-83. |
[19] | Zhu Zhenda, Wu Zheng, Liu Shu, et al. An introduction to deserts in China (revised edition)[M]. Beijing: Science Press, 1980: 77-83. ] |
[20] | 钱亦兵, 吴兆宁. 古尔班通古特沙漠环境研究[M]. 北京: 科学出版社, 2010: 2-28. |
[20] | Qian Yibing, Wu Zhaoning. Environmental study of the Gurbantunggut Desert[M]. Beijing: Science Press, 2010: 2-28. ] |
[21] | 王涛. 中国风沙防治工程[M]. 北京: 科学出版社, 2011: 14-60. |
[21] | [ Wang Tao. Aeolian sand control project in China[M]. Beijing: Science Press, 2011: 14-60. ] |
[22] | Lee D B, Ferdowsi B, Jerolmack D J. The imprint of vegetation on desert dune dynamics[J]. Geophysical Research Letters, 2019, 46(21): 12041-12048. |
[23] | 吴正. 中国沙漠及其治理[M]. 北京: 科学出版社, 2009: 589-595. |
[23] | [ Wu Zheng. China’s deserts and their governance[M]. Beijing: Science Press, 2009: 589-595. ] |
[24] | 中国科学院新疆综合考察队. 新疆地貌[M]. 北京: 科学出版社, 1978: 228-231. |
[24] | [ Xinjiang Comprehensive Investigation Team, CAS. Geomorphology of Xinjiang [M]. Beijing: Science Press, 1978: 228-231. ] |
[25] | 陈治平. 准噶尔盆地古尔班通古特沙漠的基本特征[J]. 地理集刊(地貌学), 1963(5): 79-91. |
[25] | [ Chen Zhiping. Basic characteristics of Gurbantunggut Desert in Junggar Basin[J]. Geographical Collector (Geomorphology), 1963(5): 79-91. ] |
[26] | Yang X, He Q, Liu X, et al. Saltation activity and its threshold velocity in the Gurbantunggut Desert, China[J]. Natural Hazards, 2018, 90(1): 349-364. |
[27] | 季方, 叶玮, 魏文寿. 古尔班通古特沙漠固定与半固定沙丘成因初探[J]. 干旱区地理, 2000, 23(1): 32-36. |
[27] | [ Ji Fang, Ye Wei, Wei Wenshou. Preliminary study on the formation causes of the fixed and semi-fixed dunes in Gurbantonggut Desert[J]. Arid Land Geography, 2000, 23(1): 32-36. ] |
[28] | 周宏飞, 李彦, 汤英, 等. 古尔班通古特沙漠的积雪及雪融水储存特征[J]. 干旱区研究, 2009, 26(3): 312-317. |
[28] | [ Zhou Hongfei, Li Yan, Tang Ying, et al. The characteristics of the snow-cover and snowmelt water storage in Gurbantunggut Desert[J]. Arid Zone Research, 2009, 26(3): 312-317. ] |
[29] | 王雪芹, 王涛, 蒋进, 等. 古尔班通古特沙漠南部沙面稳定性研究[J]. 中国科学: 地球科学, 2004, 34(8): 763-768. |
[29] | [ Wang Xueqin, Wang Tao, Jiang jin, et al. Study on sand surface stability in southern Gurbantunggut Desert[J]. Scientia Sinica (Terrae), 2004, 34(8): 763-768. ] |
[30] | Li S H, Fan A. OSL chronology of sand deposits and climate change of last 18?ka in Gurbantunggut Desert, northwest China[J]. Journal of Quaternary Science, 2011, 26(8): 813-818. |
[31] | 王雪芹, 蒋进, 雷加强, 等. 古尔班通古特沙漠短命植物分布及其沙面稳定意义[J]. 地理学报, 2003, 58(4): 598-605. |
[31] | [ Wang Xueqin, Jiang Jin, Lei Jiaqiang, et al. The distribution of ephemeral vegetation on the longitudinal dune surface and its stabilization significance in the Gurbantunggut Desert[J]. Acta Geographica Sinica, 2003, 58(4): 598-605. ] |
[32] | 丁佩燕. 近15年古尔班通古特沙漠植被覆盖度时空变化研究[J]. 新疆林业, 2017(4): 18-21. |
[32] | [ Ding Peiyan. Spatial-temporal variation of vegetation coverage in Gurbantunggut Desert in recent 15 years[J]. Xinjiang Forestry, 2017(4): 18-21. ] |
[33] | 尚白军, 朱家龙, 周智彬, 等. 近30年莫索湾垦区150团植被覆盖度时空变化及现状评价[J]. 云南大学学报(自然科学版), 2021, 43(2): 412-420. |
[33] | [ Shang Baijun, Zhu Jialong, Zhou Zhibin, et al. Spatio-temporal changes and current status evaluation of vegetation coverage in 150 Regiment of Mosuowan in recent 30 years[J]. Journal of Yunnan University (Natural Sciences Edition), 2021, 43(2): 412-420. ] |
[34] | 袁盼丽, 汪传建, 赵庆展, 等. 基于深度学习的寒旱区多时序影像土地利用及变化监测--以新疆莫索湾垦区为例[J]. 干旱区地理, 2021, 44(6): 1717-1728. |
[34] | [ [ Yuan Panli, Wang Chuanjian, Zhao Qingzhan, et al. Dynamic monitoring of land-use/land-cover change in cold and arid region based on deep learning: A case study of Mosuowan reclamation area in Xinjiang[J]. Arid Land Geography, 2021, 44(6): 1717-1728. ] |
[35] | 郑博文, 胡顺军, 周智彬, 等. 古尔班通古特沙漠南缘风沙土土壤水分特征与毛管水最大上升高度[J]. 干旱区地理, 2020, 43(4): 1059-1066. |
[35] | [ Zheng Bowen, Hu Shunjun, Zhou Zhibin, et al. Maximum height of capillary rising water and characteristic of soil moisture in the southern edge of Gurbantunggut Desert[J]. Arid Land Geography, 2020, 43(4): 1059-1066. ] |
[36] | Sauermann G, Rognon P, Poliakov A, et al. The shape of the barchan dunes of southern Morocco[J]. Geomorphology, 2000, 36(1): 47-62. |
[37] | 吴秀兰, 张太西, 王慧, 等. 1961-2017年新疆区域气候变化特征分析[J]. 沙漠与绿洲气象, 2020, 14(4): 27-34. |
[37] | [ Wu Xiulan, Zhang Taixi, Wang Hui, et al. Characteristics of temperature and precipitation change in Xinjiang during 1961-2017 [J]. Desert and Oasis Meteorology, 2020, 14(4): 27-34. ] |
[38] | 陈冬冬, 戴永久. 近五十年我国西北地区降水强度变化特征[J]. 大气科学, 2009, 33(5): 923-935. |
[38] | [ Chen Dongdong, Dai Yongjiu. Characteristics of northwest China rainfall intensity in recent 50 years[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(5): 923-935. ] |
[39] | 王澄海, 张晟宁, 李课臣, 等. 1961-2018年西北地区降水的变化特征[J]. 大气科学, 2021, 45(4): 713-724. |
[39] | [ Wang Chenghai, Zhang Shengning, Li Kechen,et al.Change characteristics of precipitation in northwest China from 1961 to 2018[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(4): 713-724. ] |
[40] | 王鹏祥, 杨金虎, 张强, 等. 近半个世纪来中国西北地面气候变化基本特征[J]. 地球科学进展, 2007, 22(6): 649-656. |
[40] | [ Wang Pengxiang, Yang Jinhu, Zhang Qiang, et al. Climate change characteristic of northwest China in recent half century[J]. Advances in Earth Science, 2007, 22(6): 649-656. ] |
[41] | 李红军, 杨青, 何清. 艾比湖地区的输沙势分析[J]. 干旱区研究, 2003, 20(4): 322-325. |
[41] | [ Li Hongjun, Yang Qing, He Qing. Analysis on the sand drift potentiality in the Ebinur Lake Region, Xinjiang[J]. Arid Zone Research, 2003, 20(4): 322-325. ] |
[42] | 杨怡, 吴世新, 庄庆威, 等. 2000-2018年古尔班通古特沙漠EVI时空变化特征[J]. 干旱区研究, 2019, 36(6): 1512-1520. |
[42] | [ Yang Yi, Wu Shixin, Zhuang Qingwei,et al. Spatiotemporal change of EVI in the Gurbantunggut Desert from 2000 to 2018 [J]. Arid Zone Research, 2019, 36(6): 1512-1520. ] |
[43] | 彭国栋. 沙漠化与气候变化互馈机制探究--以古尔班通古特地区为例[D]. 武汉: 华中师范大学, 2012. |
[43] | [ Peng Guodong. Study on the reciprocal feeding mechanism of desertification and climate change: A case study in Gurbantunggut Region[D]. Wuhan: Central China Normal University, 2012. ] |
[44] | Roskin J, Blumberg D G, Katra I. Last millennium development and dynamics of vegetated linear dunes inferred from ground-penetrating radar and optically stimulated luminescence ages[J]. Sedimentology, 2014, 61(5): 1240-1260. |
[45] | 王雪芹, 李丙文, 张元明. 古尔班通古特沙漠沙垄表面的稳定性与顶部流动带的形成[J]. 中国沙漠, 2003, 23(2): 28-33. |
[45] | [ Wang Xueqin, Li Bingwen, Zhang Yuanming. Stabilization of dune surface and formation of mobile belt at the top of longitudinal dunes in Gurbantonggut Desert, Xinjiang, China[J]. Journal of Desert Research, 2003, 23(2): 28-33. ] |
[46] | 郭洪旭, 王雪芹, 盖世广, 等. 古尔班通古特沙漠腹地半固定沙垄顶部风沙运动规律[J]. 干旱区地理, 2010, 33(6): 954-961. |
[46] | [ Guo Hongxu, Wang Xueqin, Gai Shiguang, et al. Wind blown sand movement on the top of semi-fixed longitudinal dune in the hinterland of Gurbantunggut Desert[J]. Arid Land Geography, 2010, 33(6): 954-961. ] |
[47] | Faria R, Ferreira A D, Sismeiro J L, et al. Wind tunnel and computational study of the stoss slope effect on the aeolian erosion of transverse sand dunes[J]. Aeolian Research, 2011, 3(3): 303-314. |
[48] | McFarlane M J, Eckardt F D, Ringrose S, et al. Degradation of linear dunes in northwest Ngamiland, Botswana and the implications for luminescence dating of periods of aridity[J]. Quaternary International, 2005, 135(1): 83-90. |
[49] | Roskin J, Porat N, Tsoar H, et al. Age, origin and climatic controls on vegetated linear dunes in the northwestern Negev Desert (Israel)[J]. Quaternary Science Reviews, 2011, 30(13): 1649-1674. |
[50] | Siegal Z, Tsoar H, Karnieli A. Effects of prolonged drought on the vegetation cover of sand dunes in the NW Negev Desert: Field survey, remote sensing and conceptual modeling[J]. Aeolian Research, 2013, 9: 161-173. |
[51] | Bristow C S, Jones B, Nanson G, et al. GPR surveys of vegetated linear dune stratigraphy in central Australia: Evidence for linear dune extension with vertical and lateral accretion[J]. Special Paper of the Geological Society of America, 2007, 432: 19-33. |
/
〈 |
|
〉 |