蒙古国中部草原地区风蚀沙漠化的风沙活动特征——以乔伊尔市为例
收稿日期: 2021-09-03
修回日期: 2021-11-04
网络出版日期: 2022-05-31
基金资助
国家重点研发计划政府间国际科技创新合作重点专项(2017YFE0109200);中国科学院A类战略性科技先导专项子课题(XDA2003020201);中国科学院关键技术人才项目资助
Aeolian sand activity characteristics of wind erosion and desertification in the grassland area of central Mongolia: A case of Choir City
Received date: 2021-09-03
Revised date: 2021-11-04
Online published: 2022-05-31
蒙古国是中蒙俄经济走廊的重要区段,但面临严重的荒漠化问题,区域经济社会发展受到严重威胁,而蒙古国中部草原地区是主要的荒漠化新扩展区,正经历强烈的草原风蚀沙漠化过程。以戈壁苏木贝尔省首府乔伊尔市为研究区,利用自建自动气象观测站(2019年5月—2020年7月)、集沙仪观测站(2019年8月—2020年8月)及当地气象站(1990—2018年)数据,对当地风蚀沙漠化的风动力条件、风沙流输沙及其他影响因素等基本特征进行了研究。结果表明:(1) 乔伊尔市具有强劲的风动力条件,年输沙势可达735.96 VU,合成输沙势为428.76 VU,合成输沙方向为SSW(195.06°),风向变率指数为0.58,属高风能环境、中等变率双峰风况。(2) 临界起沙风速因受土壤水分和植被盖度的共同影响而随季节变化,夏季最高,冬季最低,春季与秋季居中,且相差较小。(3) 地表具有强烈的风沙活动,年风沙流输沙通量可达2.135 t·m-1·a-1,Owen最大输沙量模型适于该区风沙流模拟。研究结果对于蒙古国中部草原区防沙治沙和生态恢复具有重要参考价值。
崔珂军 , 李生宇 , 范敬龙 , 王海峰 , 孟晓于 , 苗佳敏 , 吕振涛 . 蒙古国中部草原地区风蚀沙漠化的风沙活动特征——以乔伊尔市为例[J]. 干旱区地理, 2022 , 45(3) : 792 -801 . DOI: 10.12118/j.issn.1000-6060.2021.393
Desertification is known to be the “cancer of the earth”. Mongolia is a country with the most serious desertification in the world. The desertified land in Mongolia is still expanding, and the central region is an important new expansion area. The frequent dust storms have caused serious harm and are a great threat to infrastructure connectivity, energy and resource base construction, ecological security, and environmental health and have become a major hurdle limiting Mongolia’s socio-economic development and ecological security. Choir City, the capital of Gobi Sumber Province, is located in the central part of Mongolia. It is an important section of the Mongolian Plateau of the China-Mongolia-Russia economic corridor. It belongs to the mixed zone of grassland, dry grassland, and desert grassland. It is sensitive to natural and human disturbance and has serious wind erosion desertification. In this study, the wind dynamic conditions for the occurrence of local wind erosion desertification were examined using observations from the self-built automatic meteorological observatory (May 2019—July 2020) and the meteorological station of Choir City (1990—2018) and the sand collector (August 2019—August 2020). The results showed that (1) there were strong wind dynamic conditions for the occurrence of wind erosion desertification in the region. The annual sand drift potential was 735.96 VU, the resultant sand drift potential was 428.76 VU, and the resultant drift direction was SSW (195.06°). The wind direction variability index was 0.58, which belonged to the high wind energy environment with a moderate rate of variation-blunted double-peak wind conditions. (2) The critical wind speed was affected by soil moisture and vegetation coverage, which varied with seasons: it was the highest in summer and the lowest in winter, and spring and autumn are in the middle. (3) Because of the strong wind dynamic conditions and degraded surface, the sediment transport flux of aeolian sand flow was very high (2.135 t·m-1·a-1) in Choir City. The maximum sediment transport rate model developed by Owen was suitable for the simulation of aeolian sand flow in this area. This study presented a detailed analysis of wind dynamic conditions in Choir City, located in the central desert steppe region of Mongolia. The characteristics of critical starting winds in Choir City were analyzed in each season by combining soil moisture and particle size, vegetation conditions, and other factors to identify the wind dynamic basis and related influencing factors in the central steppe region of Mongolia and provide basic data for local wind and sand disaster control. The research results could provide an important reference for desertification control, ecological restoration, and local engineering construction in the desert steppe area of central Mongolia.
[1] | Jin L, Chen F, Carrie M, et al. Causes of early Holocene desertification in arid Central Asia[J]. Climate Dynamics, 2012, 38(7-8): 1577-1591. |
[2] | Liu Y H, Dong G R, LI S, et al. Status, causes and combating suggestions of sandy desertification in Qinghai-Tibet Plateau[J]. Chinese Geographical Science, 2005, 15(4): 289-296. |
[3] | 孟晓于. 蒙古国土地沙漠化时空变化特征及其驱动力[D]. 北京: 中国科学院大学, 2021. |
[3] | [ Meng Xiaoyu. Temporal and spatial variation characteristics and driving forces of land desertification in Mongolia[D]. Beijing: University of Chinese Academy of Sciences, 2021. ] |
[4] | Dong Z, Hu G, Yan C, et al. Aeolian desertification and its causes in the Zoige Plateau of China’s Qinghai-Tibetan Plateau[J]. Environmental Earth Science, 2010, 59(8): 1731-1740. |
[5] | 张丽颖. 中国北方沙漠化成因分析以及防治对策研究[J]. 四川水泥, 2016(11): 349. |
[5] | [ Zhang Liying. Cause analysis and control countermeasures of desertification in northern China[J]. Sichuan Cement, 2016(11): 349. ] |
[6] | 曾小箕, 丁建丽, 樊亚辉. 新疆艾比湖地区土地沙漠化时空演变及其成因[J]. 水土保持通报, 2014, 34(2): 287-292. |
[6] | [ Zeng Xiaoji, Ding Jianli, Fan Yahui. Spatial and temporal changes of desertification land and related influencing factions in Ebinur Lake of Xinjiang Uygur Autonomous Region[J]. Bulletin of Soil and Water Conservation, 2014, 34(2): 287-292. ] |
[7] | 宁良锋. 石羊河流域沙漠化成因分析[J]. 甘肃科技, 2012, 28(17): 47-48, 75. |
[7] | [ Ning Liangfeng. Cause analysis of desertification in Shiyang River Basin[J]. Gansu Science and Technology, 2012, 28(17): 47-48, 75. ] |
[8] | 孟鑫, 李立华, 孟祥彬. 荒漠化、沙漠化及沙尘暴的危害及治理[J]. 林业科技, 2004, 29(2): 22-23. |
[8] | [ Meng Xin, Li Lihua, Meng Xiangbin. Hazards and control of desertification, desertification and sandstorm[J]. Forestry Science and Technology, 2004, 29(2): 22-23. ] |
[9] | 张正偲, 董治宝. 风沙地貌形态动力学研究进展[J]. 地球科学进展, 2014, 29(6): 734-747. |
[9] | [ Zhang Zhengcai, Dong Zhibao. Research progress on aeolian geomorphology and morphodynamics[J]. Advances in Earth Science, 2014, 29(6): 734-747. ] |
[10] | 张正偲, 董治宝, 赵爱国. 输沙势计算中的“时距”问题[J]. 干旱区地理, 2010, 33(2): 177-182. |
[10] | [ Zhang Zhengcai, Dong Zhibao, Zhao Aiguo. Effect of different time intervals in assessing sand drift potential[J]. Arid Land Geography, 2010, 33(2): 177-182. ] |
[11] | 张宁宁, 刘彪, 王晓默. 探讨地表粗糙度的一种计算方法[J]. 中国人口资源与环境, 2013, 23(增刊2): 326-328. |
[11] | [ Zhang Ningning, Liu Biao, Wang Xiaomo. Calculational method for discussing land surface roughness[J]. China Population, Resources and Environment, 2013, 23(Suppl. 2): 326-328. ] |
[12] | Yizhaq H, Xu Z W, Ashkenazy Y. The effect of wind speed averaging time on the calculation of sand drift potential: New scaling laws[J]. Earth and Planetary Science Letters, 2020, 544: 1-10. |
[13] | 李继彦, 董治宝, 李恩菊, 等. 察尔汗盐湖雅丹地貌区风况分析[J]. 中国沙漠, 2013, 33(5): 1293-1298. |
[13] | [ Li Jiyan, Dong Zhibao, Li Enju, et al. Wind regime of Yardang landform regions in the Qarhan Salt Lake[J]. Journal of Desert Research, 2013, 33(5): 1293-1298. ] |
[14] | 田敏, 钱广强, 杨转玲, 等. 柴达木盆地东北部哈勒腾河流域风况特征及其对风沙地貌发育的影响[J]. 中国沙漠, 2021, 41(1): 1-9. |
[14] | [ Tian Min, Qian Guangqiang, Yang Zhuanling, et al. Characteristics of wind regime and its influences on the development of aeolian landforms in the Haertenghe Reach, northeastern Qaidam Basin, China[J]. Journal of Desert Research, 2021, 41(1): 1-9. ] |
[15] | 王永胜, 杨文斌, 李永华, 等. 库姆塔格沙漠东缘荒漠绿洲过渡带风况及输沙势[J]. 干旱区资源与环境, 2015, 29(1): 140-144. |
[15] | [ Wang Yongsheng, Yang Wenbin, Li Yonghua, et al. Wind regime and resultant sand-transporting potential in the desert-oasise-cotone in the eastern marginal zone of the Kumtag Desert[J]. Journal of Arid Land Resources and Environment, 2015, 29(1): 140-144. ] |
[16] | Elena A F, Christopher H H, Thomas E, et al. Wind regime, sediment transport, and landscape dynamics at a Mars analogue site in the Andes Mountains of northwestern Argentina[J]. Icarus, 2020, 346: 1-20. |
[17] | 李晋昌, 韩柳彦, 赵艳芳, 等. 晋北沙漠化地区起沙风风况与输沙势[J]. 中国沙漠, 2016, 36(4): 911-917. |
[17] | [ Li Jinchang, Han Liuyan, Zhao Yanfang, et al. Sand-driving wind regime and drift potential in the sandy desertification area of northern Shanxi, China[J]. Journal of Desert Research, 2016, 36(4): 911-917. ] |
[18] | 张华, 李锋瑞, 李玉霖, 等. 科尔沁沙地奈曼旗近5年来风况及合成输沙势[J]. 中国沙漠, 2004, 24(5): 107-111. |
[18] | [ Zhang Hua, Li Fengrui, Li Yulin, et al. Wind regime and resultant sand-transporting potential of Naiman Banner in Horqin Sandy Land during past five years[J]. Journal of Desert Research, 2004, 24(5): 107-111. ] |
[19] | 庞营军, 吴波, 贾晓红, 等. 毛乌素沙地风况及输沙势特征[J]. 中国沙漠, 2019, 39(1): 62-67. |
[19] | [ Pang Yingjun, Wu Bo, Jia Xiaohong, et al. Characteristics of wind regime and drift potential in Mu Us Sandy Land[J]. Journal of Desert Research, 2019, 39(1): 62-67. ] |
[20] | 杨兴华, 何清, 艾力·买买提明. 塔克拉玛干沙漠塔中地区春夏季风蚀起沙研究[J]. 中国沙漠, 2010, 30(4): 770-776. |
[20] | [ Yang Xinghua, He Qing, Mamtimin Ali. Dust emissions by wind erosion in spring and summer at Tazhong of Taklimakan Desert[J]. Journal of Desert Research, 2010, 30(4): 770-776. ] |
[21] | 胡光印, 董治宝, 张正偲, 等. 若尔盖盆地起沙风风况与输沙势特征[J]. 中国沙漠, 2020, 40(5): 1-5. |
[21] | [ Hu Guangyin, Dong Zhibao, Zhang Zhengcai, et al. The regime of sand driving wind and sand drift potential in Zoige Basin[J]. Journal of Desert Research, 2020, 40(5): 1-5. ] |
[22] | 谢胜波, 喻文波, 屈建军, 等. 青藏高原红梁河风沙动力环境特征[J]. 中国沙漠, 2018, 38(2): 219-224. |
[22] | [ Xie Shengbo, Yu Wenbo, Qu Jianjun, et al. Dynamic environment of blown sand at Honglianghe River of Qinghai-Tibet Plateau[J]. Journal of Desert Research, 2018, 38(2): 219-224. ] |
[23] | 汪海娇, 田丽慧, 张登山, 等. 青海湖东岸沙地风沙活动特征[J]. 中国沙漠, 2020, 40(1): 49-56. |
[23] | [ Wang Haijiao, Tian Lihui, Zhang Dengshan, et al. Characteristics of blown sand activities in sandy land on the eastern shore of the Qinghai Lake of China[J]. Journal of Desert Research, 2020, 40(1): 49-56. ] |
[24] | Pilão R, Pinto P, Guedes R. Representative period of measurements for wind regime characterization in Dobrogea region, Romania[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2014, 125: 94-101. |
[25] | 董玉祥. 西藏沙漠化灾害现状及其驱动力研究[J]. 自然灾害学报, 2001, 10(2): 96-102. |
[25] | [ Dong Yuxiang. Research on the status desertification disaster and its driving force in Xizang[J]. Journal of Natural Disasters, 2001, 10(2): 96-102. ] |
[26] | 罗凤敏, 高君亮, 辛智鸣, 等. 乌兰布和沙漠东北缘起沙风风况及输沙特征[J]. 农业工程学报, 2019, 35(4): 145-152. |
[26] | [ Luo Fengmin, Gao Junliang, Xin Zhiming, et al. Characteristics of sand-driving wind regime and sediment transport in northeast edge of Ulan Buh Desert[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(4): 145-152. ] |
[27] | 张正偲, 董治宝, 钱广强, 等. 腾格里沙漠西部和西南部风能环境与风沙地貌[J]. 中国沙漠, 2012, 32(6): 1528-1533. |
[27] | [ Zhang Zhengcai, Dong Zhibao, Qian Guangqiang, et al. Wind energy environments and aeolian geomorphology in the western and south-western Tengger Desert[J]. Journal of Desert Research, 2012, 32(6): 1528-1533. ] |
[28] | Louassa S, Merzouk M, Merzouk N K. Sand drift potential in western Algerian Hautes Plaines[J]. Aeolian Research, 2018, 34: 27-34. |
[29] | Meng X, Gao X, Li S, et al. Spatial and temporal characteristics of vegetation NDVI changes and the driving forces in Mongolia during 1982-2015[J]. Remote Sensing, 2020, 12(4): 1-25. |
[30] | 葛孚刚, 王华林, 王志才, 等. 蒙古国乔伊尔市断裂活动特征[J]. 工程建设与设计, 2017(19): 24-26. |
[30] | [ Ge Fugang, Wang Hualin, Wang Zhicai, et al. Activity characteristics of Joel fault in Mongolia[J]. Construction & Design for Engineering, 2017(19): 24-26. ] |
[31] | 孟翔冲. 蒙古国沙质荒漠化对中国北方沙质荒漠化影响研究[D]. 长春: 吉林大学, 2012. |
[31] | [ Meng Xiangchong. Study on the impact of sandy desertification in Mongolia on sandy desertification in northern China[D]. Changchun: Jilin University, 2012. ] |
[32] | 张艳珍, 王钊齐, 杨悦, 等. 蒙古高原草地退化程度时空分布定量研究[J]. 草业科学, 2018, 35(2): 233-243. |
[32] | [ Zhang Yanzhen, Wang Zhaoqi, Yang Yue, et al. Research on the quantitative evaluation of grassland degradation and spatial and temporal distribution on the Mongolia Plateau[J]. Pratacultural Science, 2018, 35(2): 233-243. ] |
[33] | 贺晶, 吴新宏, 杨婷婷, 等. 基于临界起沙风速的草地防风固沙功能研究[J]. 中国草地学报, 2013, 35(5): 103-107. |
[33] | [ He Jing, Wu Xinhong, Yang Tingting, et al. Research on sand-fixing function of grassland based on threshold wind velocity[J]. Chinese Journal of Grassland, 2013, 35(5): 103-107. ] |
[34] | 申彦波, 沈志宝, 杜明远, 等. 风蚀起沙的影响因子及其变化特征[J]. 高原气象, 2005, 24(4): 611-616. |
[34] | [ Shen Yanbo, Shen Zhibao, Du Mingyuan, et al. Factors affecting on dust emission by wind erosion and their variational characteristics[J]. Plateau Meteorology, 2005, 24(4): 611-616. ] |
[35] | Zhang K, Qu J, An Z. Characteristics of wind-blown sand and near-surface wind regime in the Tengger Desert, China[J]. Aeolian Research, 2012, 6: 83-88. |
[36] | Erdenebayar M, Masato S, John A G, et al. Relationships between soil moisture and dust emissions in a bare sandy soil of Mongolia[J]. Particuology, 2016, 28: 131-137. |
[37] | 秦豪君, 韩永翔. 近56 a蒙古高原草原地上净初级生产力变化[J]. 干旱区地理, 2019, 42(4): 914-922. |
[37] | [ Qin Haojun, Han Yongxiang. Change of above ground net primary productivity of grassland over the Mongolian Plateau in recent 56 years[J]. Arid Land Geography, 2019, 42(4): 914-922. ] |
[38] | 何清, 胡文峰, 杨兴华, 等. 内蒙古拐子湖地区风沙运动若干参数计算[J]. 干旱区地理, 2012, 35(2): 187-192. |
[38] | [ He Qing, Hu Wenfeng, Yang Xinghua, et al. Several caculations of parameters of wind-sand movement at Guaizi Lake area of Inner Mongolia[J]. Arid Land Geography, 2012, 35(2): 187-192. ] |
[39] | 程宏, 邹学勇, 张春来. 摩阻风速与平均风速的转化关系研究[J]. 水土保持研究, 2007, 14(2): 133-134, 138. |
[39] | [ Cheng Hong, Zou Xueyong, Zhang Chunlai. A study on the relationship between friction wind velocity and mean wind velocity[J]. Research of Soil and Water Conservation, 2007, 14(2): 133-134,138. ] |
[40] | 申彦波, 沈志宝, 杜明远, 等. 风蚀起沙的影响因子及其变化特征[J]. 高原气象, 2005, 24(4): 611-616. |
[40] | [ Shen Yanbo, Shen Zhibao, Du Mingyuan, et al. Factors affecting on dust emission by wind erosion and their variational characteristics[J]. Plateau Meteorology, 2005, 24(4): 611-616. ] |
[41] | 吴正. 风沙地貌学[M]. 北京: 科学出版社, 1987: 27. |
[41] | [ Wu Zheng. Aeolian geomorphology[M]. Beijing: Science Press, 1987: 27. ] |
[42] | 丁国栋. 风沙物理学[M]. 北京: 中国林业出版社, 2010: 79. |
[42] | [ Ding Guodong. Wind sand physics[M]. Beijing: China Forestry Press, 2010: 79. ] |
[43] | 郭树江, 杨自辉, 王多泽, 等. 石羊河流域下游青土湖近地层风尘分布特征[J]. 干旱区地理, 2016, 39(6): 1255-1262. |
[43] | [ Guo Shujiang, Yang Zihui, Wang Duoze, et al. Dust distribution characteristics of Qingtu Lake surface layer at downstream Shiyang River[J]. Arid Land Geography, 2016, 39(6): 1255-1262. ] |
[44] | 刘箴言, 常春平, 郭中领, 等. 3类集沙仪野外测试对比[J]. 中国沙漠, 2020, 40(6): 33-42. |
[44] | [ Liu Zhenyan, Chang Chunping, Guo Zhongling, et al. A comparative study on field test of sand collectors[J]. Journal of Desert Research, 2020, 40(6): 33-42. ] |
[45] | 黄雨晖, 韩小元, 赵健, 等. 新疆戈壁地区风沙流结构及其粒径特征研究[J]. 气象与减灾研究, 2019, 42(3): 199-205. |
[45] | [ Huang Yuhui, Han Xiaoyuan, Zhao Jian, et al. Study on wind-blown sand flow structure and particle size characteristics in Gobi area of Xinjiang[J]. Meteorology and Disaster Reduction Research, 2019, 42(3): 199-205. ] |
[46] | Shao Y, Lu H. A simple expression for wind erosion threshold friction velocity[J]. Journal of Geophysical Research, 2000, 105(D17): 22437-22443. |
[47] | 朱好, 张宏升. 沙尘天气过程临界起沙因子的研究进展[J]. 地球科学进展, 2011, 26(1): 30-38. |
[47] | [ Zhu Hao, Zhang Hongsheng. Review of the threshold for dust emission during dust events[J]. Advances in Earth Science, 2011, 26(1): 30-38. ] |
/
〈 |
|
〉 |