水文与水资源

缺测站干旱流域生态输水遥感监测与农业节水效益分析

  • 潘子豪 ,
  • 杨胜天 ,
  • 娄和震 ,
  • 于静洁 ,
  • 王忠静 ,
  • 张军
展开
  • 1.北京师范大学水科学研究院,北京 100875
    2.中国科学院地理科学与资源研究所中国科学院陆地水循环及地表过程重点实验室,北京 100101
    3.中国科学院大学,北京 100049
    4.清华大学水利系水沙科学与水利水电工程国家重点实验室,北京 100084
潘子豪(1995-),男,博士研究生,主要从事遥感水文方面研究. E-mail: 202031470004@mail.bnu.edu.cn

收稿日期: 2021-06-29

  修回日期: 2021-09-09

  网络出版日期: 2022-05-31

基金资助

国家自然科学基金(U1812401);国家自然科学基金(41801334);清华大学水沙科学与水利水电工程国家重点实验室开放基金(sklhse-2021-A-04)

Remote sensing monitoring of ecological water conveyance and benefits evaluation of agricultural water-saving in arid basin without observation station

  • Zihao PAN ,
  • Shengtian YANG ,
  • Hezhen LOU ,
  • Jingjie YU ,
  • Zhongjing WANG ,
  • Jun ZHANG
Expand
  • 1. College of Water Science, Beijing Normal University, Beijing 100875, China
    2. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
    4. State Key Laboratory of Hydro-Science and Engineering, Tsinghua University, Beijing 100084, China

Received date: 2021-06-29

  Revised date: 2021-09-09

  Online published: 2022-05-31

摘要

生态输水与农业节水是实现内陆干旱流域可持续发展的重要手段,连续水文观测资料的缺乏制约了生态输水与农业节水效益评价。为此,以中国甘肃敦煌疏勒河流域下游为例,基于遥感水文站与谷歌地球引擎进行2016—2020年月尺度的生态输水遥感监测,在此基础上结合蒸散发和土地覆盖类型等多源遥感数据评价生态输水与农业节水效益,分析两者之间在水资源方面的平衡关系。结果表明:(1) 遥感水文站与谷歌地球引擎(Google Earth Engine, GEE)能够为生态输水遥感监测与农业节水效益评价提供可靠的数据支撑。(2) 2017—2020年生态输水能够为下游湿地与河道平均每年提供2.50×108 m3生态用水,其中30.06%的水量到达下游湿地,18.47%的水量被下游河道周边的植被所利用,且使下游河道周边植被面积增加112.25 km2。(3) 农业节水在保持耕地面积维持上升趋势的前提下,2017—2020年平均每年降低耕地的蒸散发量0.395×108 m3;耕地蒸散发减少量平均占生态输水量的14.22%,农业节水有效缓解了内陆干旱流域农业用水挤占生态用水的问题。本文将为内陆干旱缺测站流域的生态输水遥感监测与农业节水效益评价提供新的思路,以期为未来的生态输水与农业节水工程的实施提供理论支撑。

本文引用格式

潘子豪 , 杨胜天 , 娄和震 , 于静洁 , 王忠静 , 张军 . 缺测站干旱流域生态输水遥感监测与农业节水效益分析[J]. 干旱区地理, 2022 , 45(3) : 774 -785 . DOI: 10.12118/j.issn.1000-6060.2021.296

Abstract

Ecological water conveyance and agricultural water-saving are known to be important means to achieve sustainable development in inland arid basins. Due to the scarcity of hydrological stations, the monitoring and benefit evaluation of ecological water conveyance and agricultural water-saving are limited. Thus, in this study, we will examine the lower reaches of the Shule River Basin in Dunhuang, Gansu Province, China. First, monthly remote sensing monitoring of ecological water conveyance from 2016 to 2020 was performed using remote sensing hydrological stations and Google Earth Engine (GEE). The benefits of ecological water conveyance and agricultural water-saving are then evaluated in conjunction with evapotranspiration and land cover types. Finally, the balance between ecological water conveyance and agricultural water-saving is analyzed in terms of water resources. The results show that (1) the remote sensing hydrological station and GEE can provide reliable data support for remote sensing monitoring of ecological water conveyance and evaluating water-saving benefits of agriculture. (2) From 2017 to 2020, ecological water conveyance can provide an average of 2.50×108 m3 ecological water per year to the downstream wetland and river, of which 30.06% reaches the downstream wetland and 18.47% is used by the vegetation around the downstream river, resulting in a significant increase in vegetation area of 112.25 km2. (3) From 2017 to 2020, agricultural water-saving can effectively reduce the evapotranspiration of cultivated land by an average of 0.395×108 m per year, assuming that arable land area continues to grow. The decrease in evapotranspiration on cultivated land accounted for 14.22% of the ecological water conveyance capacity, thus effectively alleviating the problem of agricultural water occupying ecological water in the inland arid basin. This study proposes a novel approach for monitoring ecological water conveyance and evaluating agricultural water-saving benefits in the inland drought lack station basin via remote sensing, with the goal of providing theoretical support for the implementation of ecological water conveyance and agricultural water-saving projects in the future.

参考文献

[1] Zhang Z, Hu H P, Tian F Q, et al. Groundwater dynamics under water saving irrigation and implications for sustainable water management in an oasis: Tarim River Basin of western China[J]. Hydrology and Earth System Sciences Discussions, 2014, 18(10): 3951-3967.
[2] 庞爱萍, 易雨君, 李春晖. 基于生态需水保障的农业用水安全评价--以山东省引黄灌区为例[J]. 生态学报, 2021, 41(5): 1907-1920.
[2] [ Pang Aiping, Yi Yujun, Li Chunhui. Evaluation of agricultural water-use security with ecological water demand as a priority: A case study of the Yellow River estuary in Shandong Province[J]. Acta Ecologica Sinica, 2021, 41(5): 1907-1920. ]
[3] Zhang Y, Zhu G F, Ma H Y, et al. Effects of ecological water conveyance on the hydrochemistry of a terminal lake in an inland river: A case study of Qingtu Lake in the Shiyang River Basin[J]. Water, 2019, 11(8): 1673, doi: 10.3390/w11081673.
[4] 康绍忠, 许迪. 我国现代农业节水高新技术发展战略的思考[J]. 中国农村水利水电, 2001(10): 25-29.
[4] [ Kang Shaozhong, Xu Di. Reflection on high-tech development strategies for water-saving of modern agriculture in China[J]. China Rural Water and Hydropower, 2001(10): 25-29. ]
[5] Huang F, Chunyu X Z, Zhang D R, et al. A framework to assess the impact of ecological water conveyance on groundwater-dependent terrestrial ecosystems in arid inland river basins[J]. Science of the Total Environment, 2020, 709: 136155, doi: 10.1016/j.scitotenv.2019.136155.
[6] Hao X M, Li W H. Impacts of ecological water conveyance on groundwater dynamics and vegetation recovery in the lower reaches of the Tarim River in northwest China[J]. Environmental Monitoring and Assessment, 2014, 186(11): 7605-7616.
[7] Liu G L, Kurban A, Duan H M, et al. Desert riparian forest colonization in the lower reaches of Tarim River based on remote sensing analysis[J]. Environmental Earth Sciences, 2014, 71(10): 4579-4589.
[8] Peng S H, Chen X, Qian J, et al. Spatial pattern of Populus euphratica forest change as affected by water conveyance in the lower Tarim River[J]. Forests, 2014, 5(1): 134-152.
[9] Yang F, Xue L, Wei G, et al. Study on the dominant causes of streamflow alteration and effects of the current water diversion in the Tarim River Basin, China[J]. Hydrological Processes, 2018, 32(22): 3391-3401.
[10] Zhang S H, Ye Z X, Chen Y N, et al. Vegetation responses to an ecological water conveyance project in the lower reaches of the Heihe River Basin[J]. Ecohydrology, 2017, 10(6): e1866, doi: 10.1002/eco.1866.
[11] Shen Q, Gao G Y, Lu Y H, et al. River flow is critical for vegetation dynamics: Lessons from multi-scale analysis in a hyper-arid endorheic basin[J]. Science of the Total Environment, 2017, 603: 290-298.
[12] Wang X Y, Peng S Z, Ling H B, et al. Do ecosystem service value increase and environmental quality improve due to large-scale ecological water conveyance in an arid region of China?[J]. Sustainability, 2019, 11(23): 6586, doi: 10.3390/su11236586.
[13] Liao S M, Xue L Q, Dong Z C, et al. Cumulative ecohydrological response to hydrological processes in arid basins[J]. Ecological Indicators, 2020, 111: 106005, doi: 10.1016/j.ecolind.2019.106005.
[14] 董志玲, 徐先英, 金红喜, 等. 生态输水对石羊河尾闾湖区植被的影响[J]. 干旱区资源与环境, 2015, 29(7): 101-106.
[14] [ Dong Zhiling, Xu Xianying, Jin Hongxi, et al. The impact of eco-water transportation to the vegetation in tail lake of Shiyang River[J]. Journal of Arid Land Resources and Environment, 2015, 29(7): 101-106. ]
[15] 姚增福, 李全新. 节水农业综合效益价值差异评估--基于甘肃省数据研究[J]. 华东经济管理, 2014, 28(7): 81-85.
[15] [ Yao Zengfu, Li Quanxin. An evaluation on the value discrepancies of water-saving agriculture comprehensive benefits: Based on the data of Gansu Province[J]. East China Economic Management, 2014, 28(7): 81-85. ]
[16] 田浪, 刘永强, 王珍, 等. 基于物元可拓模型的灌区水资源综合效益评价[J]. 排灌机械工程学报, 2016, 34(4): 351-356.
[16] [ Tian Lang, Liu Yongqiang, Wang Zhen, et al. Comprehensive benefit evaluation of water resources in irrigation district based on matter element extension model[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(4): 351-356. ]
[17] 高金花, 高晓珊, 廉冀宁, 等. 基于AHP-熵权法的农业节水技术综合效益评价[J]. 农机化研究, 2019, 41(12): 58-63.
[17] [ Gao Jinhua, Gao Xiaoshan, Lian Jining,et al. Comprehensive benefit evaluation of agricultural water-saving technology based on AHP-entropy weight method[J]. Journal of Agricultural Mechanization Research, 2019, 41(12): 58-63. ]
[18] 籍欢欢, 胡振华, 雷波, 等. 基于多目标评价及Topsis方法的节水农业综合效益评价--以黑龙江和平灌区为例[J]. 节水灌溉, 2019(4): 41-45.
[18] [ Ji Huanhuan, Hu Zhenhua, Lei Bo, et al. Comprehensive benefit evaluation of water-saving agriculture based on multi-objective evaluation and topsis method: Taking Heilongjiang Peace Irrigation District as an example[J]. Water Saving Irrigation, 2019(4): 41-45. ]
[19] Razavi T, Coulibaly P. Streamflow prediction in ngauged basins: Review of regionalization methods[J]. Journal of Hydrologic Engineering, 2013, 18(8): 958-975.
[20] Sivapalan M, Takeuchi K, Franks S W, et al. IAHS decade on predictions in ungauged basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences[J]. Hydrological Sciences Journal, 2003, 48(6): 857-880.
[21] Garambois P A, Monnier J. Inference of effective river properties from remotely sensed observations of water surface[J]. Advances in Water Resources, 2015, 79: 103-120.
[22] Wang S S, Zhou F Q, Russell H A J. Estimating snow mass and peak river flows for the Mackenzie River Basin using GRACE satellite observations[J]. Remote Sensing, 2017, 9(3): 256, doi: 10. 3390/rs9030256.
[23] Gleason C J, Smith L C. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(13): 4788-4791.
[24] Zhao C S, Zhang C B, Yang S T, et al. Calculating e-flow using UAV and ground monitoring[J]. Journal of Hydrology, 2017, 552: 351-365.
[25] Yang S T, Wang J, Wang P F, et al. Low altitude unmanned aerial vehicles (UAVs) and satellite remote sensing are used to calculated river discharge attenuation coefficients of ungauged catchments in arid desert[J]. Water, 2019, 11(12): 2633, doi: 10.3390/w111 22633.
[26] 张纯斌, 杨胜天, 赵长森, 等. 小型消费级无人机地形数据精度验证[J]. 遥感学报, 2018, 22(1): 185-195.
[26] [ Zhang Chunbin, Yang Shengtian, Zhao Changsen, et al. Topographic data accuracy verification of small consumer UAV[J]. Journal of Remote Sensing, 2018, 22(1): 185-195. ]
[27] Yang S T, Wang P F, Lou H Z, et al. Estimating river discharges in ungauged catchments using the slope-area method and unmanned aerial vehicle[J]. Water, 2019, 11(11): 2361, doi: 10.3390/w1111 2361.
[28] Lou H Z, Wang P F, Yang S T, et al. Combining and comparing an unmanned aerial vehicle and multiple remote sensing satellites to calculate long-term river discharge in an ungauged water source region on the Tibetan Plateau[J]. Remote Sensing, 2020, 12(13): 2155, doi: 10.3390/rs12132155.
[29] Wang P F, Yang S T, Wang J, et al. Discharge estimation with hydraulic geometry using unmanned aerial vehicle and remote sensing[J]. Journal of Hydraulic Engineering, 2020, 51(4): 492-504.
[30] Yang S T, Li C J, Lou H Z, et al. Performance of an unmanned aerial vehicle (UAV) in calculating the flood peak discharge of ephemeral rivers combined with the incipient motion of moving stones in arid ungauged regions[J]. Remote Sensing, 2020, 12(10): 1610, doi: 10.3390/rs12101610.
[31] 宁亚洲, 张福平, 冯起, 等. 基于SEBAL模型的疏勒河流域蒸散发估算与灌溉效率评价[J]. 干旱区地理, 2020, 43(4): 928-938.
[31] [ Ning Yazhou, Zhang Fuping, Feng Qi, et al. Estimation of evapotranspiration in Shule River Basin based on SEBAL model and evaluation on irrigation efficiency[J]. Arid Land Geography, 2020, 43(4): 928-938. ]
[32] 王合创, 徐宝山, 南洋, 等. 疏勒河流域敦煌生态输水问题研究[J]. 水利规划与设计, 2020, 5(5): 38-43.
[32] [ Wang Hechuang, Xu Baoshan, Nan Yang, et al. Study on Dunhuang ecological water conveyance in Shule River Basin[J]. Water Resources Planning and Design, 2020, 5(5): 38-43. ]
[33] 岳东霞, 陈冠光, 朱敏翔, 等. 近20年疏勒河流域生态承载力和生态需水研究[J]. 生态学报, 2019, 39(14): 5178-5187.
[33] [ Yue Dongxia, Chen Guanguang, Zhu Minxiang, et al. Biocapacity and ecological water demand in Shule River Basin over the past 20 years[J]. Acta Ecologica Sinica, 2019, 39(14): 5178-5187. ]
[34] 岳东霞, 苗俊霞, 朱敏翔, 等. 疏勒河流域陆地水储量与植被指数的时空耦合关系[J]. 生态学报, 2019, 39(14): 5268-5278.
[34] [ Yue Dongxia, Miao Junxia, Zhu Minxiang, et al. Spatio-temporal coupling between terrestrial water storage and vegetation index in Shule River Basin[J]. Acta Ecologica Sinica, 2019, 39(14): 5268-5278. ]
[35] 王希义, 彭淑贞, 徐海量, 等. 大型输水工程的生态效益与社会经济效益评价--以塔里木河下游为例[J]. 地理科学, 2020, 40(2): 308-314.
[35] [ Wang Xiyi, Peng Shuzhen, Xu Hailiang, et al. Evaluation of ecological and social-economic benefits of large water conveyance projects: A case study on the lower reaches of the Tarim River[J]. Scientia Geographica Sinica, 2020, 40(2): 308-314. ]
[36] 金荣. 双塔灌区2019年农田灌溉水有效利用系数测算分析[J]. 地下水, 2021, 43(3): 104, 168.
[36] [ Jin Rong. Calculation and analysis of effective utilization coefficient of farmland irrigation water in Shuangta irrigation area in 2019[J]. Ground Water, 2021, 43(3): 104, 168. ]
[37] 张彦武. 疏勒河的变迁对敦煌西湖湿地的影响分析[D]. 北京: 清华大学, 2016.
[37] Zhang Yanwu. Analysis of the influence of the Shule River changes on West Lake wetland at the Dunhuang City[D]. Beijing: Tsinghua University, 2016. ]
[38] 曾有孝, 周毅. 甘肃省疏勒河流域尾闾生态补水工程措施研究[J]. 人民黄河, 2018, 40(11): 88-91.
[38] [ Zeng Youxiao, Zhou Yi. Study on measures of ecological replenishment engineering at the tail of Shule River Basin in Gansu Province[J]. Yellow River, 2018, 40(11): 88-91. ]
[39] 孙栋元, 齐广平, 马彦麟, 等. 疏勒河干流径流变化特征研究[J]. 干旱区地理, 2020, 43(3): 557-567.
[39] [ Sun Dongyuan, Qi Guangping, Ma Yanlin, et al. Variation characteristics of runoff in the mainstream of Shule River[J]. Arid Land Geography, 2020, 43(3): 557-567. ]
文章导航

/